Introduction to the les package:
Identifying Loci of Enhanced Significance in
Tiling Array Data

Julian Gehring
October 18, 2010

Abstract

In this vignette we describe how to find Loci of Enhanced Significance
(LES) in tiling microarray data using the les package. With an example of
a general framework we illustrate how to apply the package for exploring
data to identify regions of differential regulation.

1 Introduction

Tiling microarrays have become an important platform for the investigation of
regulation in expression and DNA-protein interaction. Due to their lower bias
towards annotation compared to other microarray platforms they provide an
powerful tool for biological research.

Beside the analysis of transcription for single conditions investigation of reg-
ulation between multiple experimental conditions is important for current re-
search. A common approach consists in applying some suitable statistical tests
on the level of single probes and thereby computing p-values p; for each probe i
independently. Since the targets of such experiments cover regions with several
probes a reasonable next step involves combining information from neighboring
probes. Many approaches use a smoothing window to obtain this. While these
methods may work well most of them produce a feature that lacks a statistical
interpretation.

In regions with differential effects the test statistics change their distribution
and are referred to as Loci of Enhanced Significance (LES). The changes of the
test statistics depend on the underlying test applied.

The les package provides the ability to detect such LES independent of
the underlying statistical test and can therefore be used for a wide range of
applications. This vignette illustrates how LES can be identified with a general
framework in tiling microarray data sets.

2 Data and statistics on probe level

For the analysis in this vignette we will use a simulated data set describing
differential expression between two conditions. Please note that this data does
not reflect real biological data. It is rather meant to illustrate the workflow than
to provide real life data.

The data set consists of 1000 probes and two groups, e.g. treatment and
control, each measured with three replicates. The expression values are stored
in an expression set. We will extract the position of the probes, the conditions of
the samples and the expression intensities. There are two regions of regulation
present in the data each 50 bp long.

For experimental data, the positions of the probes are given by the design
of the microarray. For simplicity we assume regularly spaced probes with 1 bp
resolution in this illustration.

library(les)

library(Biobase)

data(simTile)

treatment <- as.factor (phenoData(simTile)$condition ==
"treatment")

pos <- featureData(simTile)$position

exprs <- exprs(simTile)

regions <- c(100, 150, 600, 650)

cols <- rep(c("lightblue3", "lightgreen"), each = 2)

VVVYV +VVVYV

Next we have a look at the expression values.

> matplot(exprs, pch = ".", xlab = "Probe position",
ylab = "Expression")
> abline(v = regions, col = cols)

+

4.2

4.0

Expression

3.4

3.2

Probe position

In the next step we will compute compute a test statistics assessing regula-
tory changes between the two conditions for each probe. Since the sample size
as for most tiling microarray experiments is small we will use a modified t-test
provided by the limma package [2].

We will also plot the p-values p; against the probe positions i.

> library(limma)

> design <- cbind(mean = 1, diff = treatment)
> fit <- lmFit(exprs, design)

> fit <- eBayes(fit)

> pval <- as.numeric(fit$p.valuel[, "diff"])

> plot(pos, pval, pch = ".", xlab = "Probe position",
+ ylab = "P-value")
> abline(v = regions, col = cols)

1.0

P-value
0.6

0.4

0.2

I I I I I I
0 200 400 600 800 1000

Probe position

3 Incorporation information of neighboring probes

In tiling array experiments regions of regulation extend over several neighboring
probes. Thereby p-values belonging to neighboring probes matching of the same
region should contain mutual information and incorporation of such will be
beneficial.

In the les package this in done in the following manner: For each probe
the surrounding p-values p; get weights assigned by a windowing function. A
weighted cumulative density is then computed and the fraction of significant p;
is estimated by iterative linear fitting. The method is based on the fact that p-
values are uniformly distributed under the null hypothesis Hy whereas p-values
violating Hy are shifted towards smaller values [1]. This results in A; constitut-
ing an estimate of the fraction of p-values violating Hy around the evaluated
position and therefore the degree of significance in the local surrounding. It
should be noted that this approach is closely related to the estimation of a false
discovery rate and A; can be interpreted in a similar way.

For the analysis we will first store our data in an object of class Les by calling
the Les function. The only data required for the analysis are the position of the
probes i, the corresponding p-values p; from the statistical test and optionally
their chromosomal location.

> res <- Les(pos, pval)

Then we can compute our first estimate of A; for which we have to specify
a window size. The power of detecting a region will be high if the size of
the window matches approximately the size of the regulated region. In many
experiments a rough prior knowledge on the region size is available which can
be sufficient for choosing a window size.

By default a triangular weighting function will be chosen. We can also
take different weighting functions such as a rectangular one or write our own
function and pass it with the weighting argument. This step is described below
in section 8 on page 11. Further we can specify whether we want to include the
Grenander correction for the cumulative density or use multicore processing.

> win <- 30
> res <- estimate(res, win)

All data, results and parameters are now stored in the object named res.
We can get a short summary on the results by calling print, summary or by
plotting it.

> res

** Object of class 'Les' *x
* 1000 probes on 1 chromosomes
* Lambda in range [0, 0.659172] with window size 30

> plot(res)
> abline(v = regions, col = cols)

1.0

0.6
|

0.4

0.2

0.0

I I I I I I
0 200 400 600 800 1000

Probe position

For comparison we will analyze and plot the same data with a different
window size. This allows us to explore our data set.

> win2 <- 50
> res <- estimate(res, win2)

> res

** Object of class 'Les' *x*
* 1000 probes on 1 chromosomes
* Lambda in range [0, 0.444212] with window size 50

> plot(res)
> abline(v = regions, col = cols)

1.0

0.6
|

0.4

0.2

0.0

I I I I I I
0 200 400 600 800 1000

Probe position

We can already see two distinct peaks that correspond well to the simulated
regions of regulation.

The plot method provides additional arguments that help customizing the
figure.

4 Parameter estimation from the data

To turn the continuous A; into distinct regions of interest we have to define
a threshold ©. It can be derived from the data by estimating the number of
probes with a significant effect R on the whole array. Then © can be chosen
such that | A; > © |= R. The content of any slot can be accessed by using the
[-method.

> res <- threshold(res, grenander = TRUE, verbose = TRUE)
[1] "34 significant probes estimated with limit Lambda>=0.416753"

Based on © we can look for regions that have a continuous A; > ©. The
regions method takes by default the estimated © as shown before. We can also
pass our own estimate for © with the limit argument. Further restrictions
can be imposed on the regions such as the minimal length of a region and the
maximum gap allowed between probes of one region.

A data frame with the estmated regions can be accessed with the [-method.
This can also be used to access any other data slot of a LES object.

> theta <- 0.3
> res <- regions(res, limit = theta, verbose = TRUE)

[1] "2 regions found for lambda>=0.3"
> res

** Object of class 'Les' *x*

* 1000 probes on 1 chromosomes

Lambda in range [0, 0.444212] with window size 50

34 regulated probes estimated for lambda >= 0.416753
2 regions detected

* ¥ ¥

> res["regions"]

chr start end size nProbes ri se rs
0 106 152 a7 47 0.4408 0.0094 46.7150
0 603 644 42 42 0.5941 0.0272 21.8543

N -

region <- res["regions"]

borders <- c(region$start, region$end)
plot(res)

abline(v = regions, col = cols)

abline(v = borders, col = "darkgray", 1ty = 2)

vV V.V Vv VvV

1.0

0.6
|

0.4

0.2

0.0

I I I I I
200 400 600 800 1000

o

Probe position

5 Calculation of confidence intervals

In some cases it is also useful to provide confidence intervals (CI) for A;. These
are computed by bootstrapping the probes in the window. Since bootstrapping
is by its nature computationally demanding and CI are primarily interesting in
regions of interest it it possible to compute CI for a subset of probes and to
specify the number of bootstraps.

> subset <- pos >= 580 & pos <= 670
> res <- ci(res, subset, nBoot = 50)

> plot(res, error = "ci", limit = theta, xlim = c(580,
+ 670))

1.0

0.6

0.4
|

0.2

0.0

I I I I I
580 600 620 640 660

Probe position

6 Plotting capabilities

The plot method provides many arguments for customizing figures.

The following command plots a smaller region of the chromosome with con-
fidence intervals and the estimated region. Further the positions of the probes
are shown at the top and the representation of the probes are changed.

> plot(res, error = "ci", region = TRUE, rug = TRUE,

+ rugSide = 3, main = "LES for simulated data',

+ probePch = "*", probeCol = "blue", errorCol = "lightgray",
+ regionCol = "lightgreen", xlim = c(580, 670),

+ ylim = ¢(0, 0.8), limit = FALSE, 1ty = 0)

10

LES for simulated data

@ NI
o
© _|
o
< ***k****’*w*k&*
< s o Fiky
& ***
A i
*** ***
<5 *,
N M ****
o ***** ***
,***# *e
**%
o |
o []
T T T T I
580 600 620 640 660

Probe position

7 Exporting result to external software

The estimated regions as well as A can be saved to a file with the ezport method.
The regions can be exported to the bed and gff formats, the test statistic A to the
wig format. These formats can be directly loaded into many genome software
packages and browsers.

8 Specification of own window functions

With the triangWeight, rectangWeight, epWeight and gaussWeight four win-
dow functions are already included in the les package, providing a triangular,
rectangular, Epanechnikov and Gaussian window, respectively. We can also
specify own window functions and pass it via the weighting argument in the
estimate method. They have to be specified in the following format, here illus-
trated with a triangular weighting.

> weightFoo <- function(distance, win) {
+ weight <- 1 - distance/win

+ return(weight)

+}

>

res2 <- estimate(res, 20, weighting = weightFoo)

11

References

[1] Kilian Bartholomé, Clemens Kreutz, and Jens Timmer. Estimation of gene
induction enables a Relevance-Based ranking of gene sets. Journal of Com-
putational Biology, 16(7):959-967, 2009.

[2] G.Smyth. limma: Linear models for microarray data. In Bioinformatics and
Computational Biology Solutions Using R and Bioconductor, pages 397-420.
2005.

Session information

e R version 2.12.0 (2010-10-15), x86_64-unknown-linux-gnu
e Base packages: base, datasets, grDevices, graphics, methods, stats, utils
e Other packages: Biobase 2.10.0, fdrtool 1.2.6, les 1.0.0, limma 3.6.0

e Loaded via a namespace (and not attached): AnnotationDbi 1.12.0,
DBI 0.2-5, GSRI 1.2.0, RColorBrewer 1.0-2, RSQLite 0.9-2,
annotate 1.28.0, boot 1.2-43, gdata 2.8.0, genefilter 1.32.0, gplots 2.8.0,
gtools 2.6.2, splines 2.12.0, survival 2.35-8, tools 2.12.0, xtable 1.5-6

12

	Introduction
	Data and statistics on probe level
	Incorporation information of neighboring probes
	Parameter estimation from the data
	Calculation of confidence intervals
	Plotting capabilities
	Exporting result to external software
	Specification of own window functions

