
Some Basic Analysis of ChIP-Seq Data

July 23, 2010

Our goal is to describe the use of Bioconductor software to perform some basic tasks in the analysis of
ChIP-Seq data. We will use several functions in the as-yet-unreleased chipseq package, which provides
convenient interfaces to other powerful packages such as ShortRead and IRanges. We will also use the
lattice and rtracklayer packages for visualization.

> library(chipseq)

> library(GenomicFeatures)

> library(lattice)

Example data

The cstest data set is included in the chipseq package to help demonstrate its capabilities. The dataset
contains data for three chromosomes from Solexa lanes, one from a CTCF mouse ChIP-Seq, and one from
a GFP mouse ChIP-Seq. The raw reads were aligned to the reference genome (mouse in this case) using
an external program (MAQ), and the results read in using the the readAligned function in the
ShortRead, in conjunction with a filter produced by the chipseqFilter function. This step filtered the
reads to remove duplicates, to restrict mappings to the canonical, autosomal chromosomes and ensure
that only a single read maps to a given position. A quality score cutoff was also applied. The remaining
data were reduced to a set of aligned intervals (including orientation). This saves a great deal of memory,
as the sequences, which are unnecessary, are discarded. Finally, we subset the data for chr10 to chr12,
simply for convenience in this vignette.
We outline this process with this unevaluated code block:

> qa_list <- lapply(sampleFiles, qa)

> report(do.call(rbind, qa_list))

> ## spend some time evaluating the QA report, then procede

> filter <- compose(chipseqFilter(), alignQualityFilter(15))

> cstest <- seqapply(sampleFiles, function(file) {

+ as(readAligned(file, filter), "GRanges")

+ })

> cstest <- cstest[seqnames(cstest) %in% c("chr10", "chr11", "chr12")]

The above step has been performed in advance, and the output has been included as a dataset in this
package. We load it now:

> data(cstest)

> cstest

1

GRangesList of length 2
$ctcf
GRanges with 450096 ranges and 0 elementMetadata values

seqnames ranges strand |
<Rle> <IRanges> <Rle> |

[1] chr10 [3012936, 3012959] - |
[2] chr10 [3012941, 3012964] - |
[3] chr10 [3012944, 3012967] - |
[4] chr10 [3012955, 3012978] - |
[5] chr10 [3012963, 3012986] - |
[6] chr10 [3012969, 3012992] - |
[7] chr10 [3012978, 3013001] - |
[8] chr10 [3013071, 3013094] - |
[9] chr10 [3018464, 3018487] - |
...

[450088] chr12 [121220518, 121220541] + |
[450089] chr12 [121222581, 121222604] + |
[450090] chr12 [121235756, 121235779] + |
[450091] chr12 [121236634, 121236657] + |
[450092] chr12 [121239376, 121239399] + |
[450093] chr12 [121245849, 121245872] + |
[450094] chr12 [121245895, 121245918] + |
[450095] chr12 [121246344, 121246367] + |
[450096] chr12 [121253499, 121253522] + |

...
<1 more element>

seqlengths
chr10 chr11 chr12

NA NA NA

cstest is an object of class GRangesList, and has a list-like structure, each component representing the
alignments from one lane, as a GRanges object of stranded intervals.

> cstest$ctcf

GRanges with 450096 ranges and 0 elementMetadata values
seqnames ranges strand |

<Rle> <IRanges> <Rle> |
[1] chr10 [3012936, 3012959] - |
[2] chr10 [3012941, 3012964] - |
[3] chr10 [3012944, 3012967] - |
[4] chr10 [3012955, 3012978] - |
[5] chr10 [3012963, 3012986] - |
[6] chr10 [3012969, 3012992] - |
[7] chr10 [3012978, 3013001] - |
[8] chr10 [3013071, 3013094] - |

2

[9] chr10 [3018464, 3018487] - |
...

[450088] chr12 [121220518, 121220541] + |
[450089] chr12 [121222581, 121222604] + |
[450090] chr12 [121235756, 121235779] + |
[450091] chr12 [121236634, 121236657] + |
[450092] chr12 [121239376, 121239399] + |
[450093] chr12 [121245849, 121245872] + |
[450094] chr12 [121245895, 121245918] + |
[450095] chr12 [121246344, 121246367] + |
[450096] chr12 [121253499, 121253522] + |

seqlengths
chr10 chr11 chr12

NA NA NA

The mouse genome

The data we have refer to alignments to a genome, and only makes sense in that context. Bioconductor
has genome packages containing the full sequences of several genomes. The one relevant for us is

> library(BSgenome.Mmusculus.UCSC.mm9)

> seqlengths(cstest) <- seqlengths(Mmusculus)

We will only make use of the chromosome lengths, but the actual sequence will be needed for motif
finding, etc.

Extending reads

Solexa gives us the first few (24 in this example) bases of each fragment it sequences, but the actual
fragment is longer. By design, the sites of interest (transcription factor binding sites) should be
somewhere in the fragment, but not necessarily in its initial part. Although the actual lengths of
fragments vary, extending the alignment of the short read by a fixed amount in the appropriate direction,
depending on whether the alignment was to the positive or negative strand, makes it more likely that we
cover the actual site of interest.
It is possible to estimate the fragment length, through a variety of methods. There are several
implemented by the estimate.mean.fraglen function. Generally, this only needs to be done for one
sample from each experimental protocol. Here, we use SSISR, the default method:

> fraglen <- estimate.mean.fraglen(cstest$ctcf)

> fraglen[!is.na(fraglen)]

chr10 chr11 chr12
191.7425 184.5548 196.0883

Given the suggestion of 190 nucleotides, we extend all reads to be 200 bases long. This is done using the
resize function, which considers the strand to determine the direction of extension:

> ctcf.ext <- resize(cstest$ctcf, width = 200)

> ctcf.ext

3

GRanges with 450096 ranges and 0 elementMetadata values
seqnames ranges strand |

<Rle> <IRanges> <Rle> |
[1] chr10 [3012760, 3012959] - |
[2] chr10 [3012765, 3012964] - |
[3] chr10 [3012768, 3012967] - |
[4] chr10 [3012779, 3012978] - |
[5] chr10 [3012787, 3012986] - |
[6] chr10 [3012793, 3012992] - |
[7] chr10 [3012802, 3013001] - |
[8] chr10 [3012895, 3013094] - |
[9] chr10 [3018288, 3018487] - |
...

[450088] chr12 [121220518, 121220717] + |
[450089] chr12 [121222581, 121222780] + |
[450090] chr12 [121235756, 121235955] + |
[450091] chr12 [121236634, 121236833] + |
[450092] chr12 [121239376, 121239575] + |
[450093] chr12 [121245849, 121246048] + |
[450094] chr12 [121245895, 121246094] + |
[450095] chr12 [121246344, 121246543] + |
[450096] chr12 [121253499, 121253698] + |

seqlengths
chr1 chr2 chr3 ... chrY_random chrUn_random

197195432 181748087 159599783 ... 58682461 5900358

We now have intervals for the CTCF lane that represent the original fragments that were precipitated.

Coverage, islands, and depth

A useful summary of this information is the coverage, that is, how many times each base in the genome
was covered by one of these intervals.

> cov.ctcf <- coverage(ctcf.ext)

> cov.ctcf

SimpleRleList of length 35
$chr1
'integer' Rle of length 197195432 with 1 run
Lengths: 197195432
Values : 0

$chr2
'integer' Rle of length 181748087 with 1 run
Lengths: 181748087
Values : 0

$chr3

4

'integer' Rle of length 159599783 with 1 run
Lengths: 159599783
Values : 0

$chr4
'integer' Rle of length 155630120 with 1 run
Lengths: 155630120
Values : 0

$chr5
'integer' Rle of length 152537259 with 1 run
Lengths: 152537259
Values : 0

...
<30 more elements>

For efficiency, the result is stored in a run-length encoded form.

5

The regions of interest are contiguous segments of non-zero coverage, also known as islands.

> islands <- slice(cov.ctcf, lower = 1)

> islands

SimpleRleViewsList of length 35
$chr1
Views on a 197195432-length Rle subject

views: NONE

$chr2
Views on a 181748087-length Rle subject

views: NONE

$chr3
Views on a 159599783-length Rle subject

views: NONE

...
<32 more elements>

For each island, we can compute the number of reads in the island, and the maximum coverage depth
within that island.

> viewSums(islands)

SimpleIntegerList of length 35
[["chr1"]] integer(0)
[["chr2"]] integer(0)
[["chr3"]] integer(0)
[["chr4"]] integer(0)
[["chr5"]] integer(0)
[["chr6"]] integer(0)
[["chr7"]] integer(0)
[["chr8"]] integer(0)
[["chr9"]] integer(0)
[["chr10"]] 2400 200 200 200 200 200 200 200 ... 200 200 400 200 200 200 200
...
<25 more elements>

> viewMaxs(islands)

SimpleIntegerList of length 35
[["chr1"]] integer(0)
[["chr2"]] integer(0)
[["chr3"]] integer(0)
[["chr4"]] integer(0)

6

[["chr5"]] integer(0)
[["chr6"]] integer(0)
[["chr7"]] integer(0)
[["chr8"]] integer(0)
[["chr9"]] integer(0)
[["chr10"]] 8 1 1 1 1 1 1 1 2 2 1 1 1 1 2 1 ... 1 1 2 1 1 1 1 3 1 1 1 2 1 1 1 1
...
<25 more elements>

> nread.tab <- table(viewSums(islands) / 200)

> depth.tab <- table(viewMaxs(islands))

> nread.tab[,1:10]

1 2 3 4 5 6 7 8 9 10
chr1 0 0 0 0 0 0 0 0 0 0
chr2 0 0 0 0 0 0 0 0 0 0
chr3 0 0 0 0 0 0 0 0 0 0
chr4 0 0 0 0 0 0 0 0 0 0
chr5 0 0 0 0 0 0 0 0 0 0
chr6 0 0 0 0 0 0 0 0 0 0
chr7 0 0 0 0 0 0 0 0 0 0
chr8 0 0 0 0 0 0 0 0 0 0
chr9 0 0 0 0 0 0 0 0 0 0
chr10 68335 13337 3090 958 388 236 151 129 116 83
chr11 72202 16015 4394 1383 603 346 244 170 161 125
chr12 59277 11486 2628 782 343 174 136 102 70 73
chr13 0 0 0 0 0 0 0 0 0 0
chr14 0 0 0 0 0 0 0 0 0 0
chr15 0 0 0 0 0 0 0 0 0 0
chr16 0 0 0 0 0 0 0 0 0 0
chr17 0 0 0 0 0 0 0 0 0 0
chr18 0 0 0 0 0 0 0 0 0 0
chr19 0 0 0 0 0 0 0 0 0 0
chrX 0 0 0 0 0 0 0 0 0 0
chrY 0 0 0 0 0 0 0 0 0 0
chrM 0 0 0 0 0 0 0 0 0 0
chr1_random 0 0 0 0 0 0 0 0 0 0
chr3_random 0 0 0 0 0 0 0 0 0 0
chr4_random 0 0 0 0 0 0 0 0 0 0
chr5_random 0 0 0 0 0 0 0 0 0 0
chr7_random 0 0 0 0 0 0 0 0 0 0
chr8_random 0 0 0 0 0 0 0 0 0 0
chr9_random 0 0 0 0 0 0 0 0 0 0
chr13_random 0 0 0 0 0 0 0 0 0 0
chr16_random 0 0 0 0 0 0 0 0 0 0
chr17_random 0 0 0 0 0 0 0 0 0 0
chrX_random 0 0 0 0 0 0 0 0 0 0
chrY_random 0 0 0 0 0 0 0 0 0 0
chrUn_random 0 0 0 0 0 0 0 0 0 0

7

> depth.tab[,1:10]

1 2 3 4 5 6 7 8 9 10
chr1 0 0 0 0 0 0 0 0 0 0
chr2 0 0 0 0 0 0 0 0 0 0
chr3 0 0 0 0 0 0 0 0 0 0
chr4 0 0 0 0 0 0 0 0 0 0
chr5 0 0 0 0 0 0 0 0 0 0
chr6 0 0 0 0 0 0 0 0 0 0
chr7 0 0 0 0 0 0 0 0 0 0
chr8 0 0 0 0 0 0 0 0 0 0
chr9 0 0 0 0 0 0 0 0 0 0
chr10 68385 14775 2500 618 299 223 175 171 130 130
chr11 72264 18090 3568 911 472 288 264 231 204 186
chr12 59338 12681 2112 482 249 194 142 113 109 99
chr13 0 0 0 0 0 0 0 0 0 0
chr14 0 0 0 0 0 0 0 0 0 0
chr15 0 0 0 0 0 0 0 0 0 0
chr16 0 0 0 0 0 0 0 0 0 0
chr17 0 0 0 0 0 0 0 0 0 0
chr18 0 0 0 0 0 0 0 0 0 0
chr19 0 0 0 0 0 0 0 0 0 0
chrX 0 0 0 0 0 0 0 0 0 0
chrY 0 0 0 0 0 0 0 0 0 0
chrM 0 0 0 0 0 0 0 0 0 0
chr1_random 0 0 0 0 0 0 0 0 0 0
chr3_random 0 0 0 0 0 0 0 0 0 0
chr4_random 0 0 0 0 0 0 0 0 0 0
chr5_random 0 0 0 0 0 0 0 0 0 0
chr7_random 0 0 0 0 0 0 0 0 0 0
chr8_random 0 0 0 0 0 0 0 0 0 0
chr9_random 0 0 0 0 0 0 0 0 0 0
chr13_random 0 0 0 0 0 0 0 0 0 0
chr16_random 0 0 0 0 0 0 0 0 0 0
chr17_random 0 0 0 0 0 0 0 0 0 0
chrX_random 0 0 0 0 0 0 0 0 0 0
chrY_random 0 0 0 0 0 0 0 0 0 0
chrUn_random 0 0 0 0 0 0 0 0 0 0

8

Processing multiple lanes

Although data from one lane is often a natural analytical unit, we typically want to apply any procedure
to all lanes. A function that is useful for this purpose is seqapply, which applies a function to a Sequence
and returns the result as another Sequence, if possible. In this case, our input Sequence is GRangesList ,
and our expected output is a DataFrameList . Here is a simple summary function that computes the
frequency distribution of the number of reads.

> islandReadSummary <- function(x)

+ {

+ g <- resize(x, 200)

+ s <- slice(coverage(g), lower = 1)

+ tab <- table(viewSums(s) / 200)

+ df <- DataFrame(tab)

+ colnames(df) <- c("chromosome", "nread", "count")

+ df$nread <- as.integer(df$nread)

+ df

+ }

Applying it to our test-case, we get

> head(islandReadSummary(cstest$ctcf))

DataFrame with 6 rows and 3 columns
chromosome nread count
<factor> <integer> <integer>

1 chr1 1 0
2 chr2 1 0
3 chr3 1 0
4 chr4 1 0
5 chr5 1 0
6 chr6 1 0

We can now use it to summarize the full dataset, flattening the returned DataFrameList with the stack
function.

> nread.islands <- seqapply(cstest, islandReadSummary)

> nread.islands <- stack(nread.islands, "sample")

> nread.islands

DataFrame with 4130 rows and 4 columns
sample chromosome nread count
<Rle> <factor> <integer> <integer>

1 ctcf chr1 1 0
2 ctcf chr2 1 0
3 ctcf chr3 1 0
4 ctcf chr4 1 0
5 ctcf chr5 1 0
6 ctcf chr6 1 0
7 ctcf chr7 1 0

9

8 ctcf chr8 1 0
9 ctcf chr9 1 0
...
4122 gfp chr7_random 31 0
4123 gfp chr8_random 31 0
4124 gfp chr9_random 31 0
4125 gfp chr13_random 31 0
4126 gfp chr16_random 31 0
4127 gfp chr17_random 31 0
4128 gfp chrX_random 31 0
4129 gfp chrY_random 31 0
4130 gfp chrUn_random 31 0

10

> xyplot(log(count) ~ nread | sample, as.data.frame(nread.islands),

+ subset = (chromosome == "chr10" & nread <= 40),

+ layout = c(1, 2), pch = 16, type = c("p", "g"))

nread

lo
g(

co
un

t)

0

2

4

6

8

10

0 10 20 30 40

●

●

●

●

●

●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ●
● ●

●
●

●

●
● ●

● ●
●

● ●

●

●

●

●

● ●

ctcf

0

2

4

6

8

10

●

●

●

●

●

●

●

●

●

●

gfp

11

If reads were sampled randomly from the genome, then the null distribution number of reads per island
would have a geometric distribution; that is,

P (X = k) = pk−1(1− p)

In other words, log P (X = k) is linear in k. Although our samples are not random, the islands with just
one or two reads may be representative of the null distribution.

> xyplot(log(count) ~ nread | sample, as.data.frame(nread.islands),

+ subset = (chromosome == "chr10" & nread <= 40),

+ layout = c(1, 2), pch = 16, type = c("p", "g"),

+ panel = function(x, y, ...) {

+ panel.lmline(x[1:2], y[1:2], col = "black")

+ panel.xyplot(x, y, ...)

+ })

nread

lo
g(

co
un

t)

0

2

4

6

8

10

0 10 20 30 40

●

●

●

●

●

●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ●

● ●
●

●
●

● ● ●
● ●

●
● ●

●
●

●

●

● ●

ctcf

0

2

4

6

8

10

●

●

●

●

●

●

●

●

●

●

gfp

12

We can create a similar plot of the distribution of depths.

> islandDepthSummary <- function(x)

+ {

+ g <- resize(x, 200)

+ s <- slice(coverage(g), lower = 1)

+ tab <- table(viewMaxs(s) / 200)

+ df <- DataFrame(tab)

+ colnames(df) <- c("chromosome", "depth", "count")

+ df$depth <- as.integer(df$depth)

+ df

+ }

> depth.islands <- seqapply(cstest, islandDepthSummary)

> depth.islands <- stack(depth.islands, "sample")

> xyplot(log(count) ~ depth | sample, as.data.frame(depth.islands),

+ subset = (chromosome == "chr10" & depth <= 20),

+ layout = c(1, 2), pch = 16, type = c("p", "g"),

+ panel = function(x, y, ...) {

+ lambda <- 2 * exp(y[2]) / exp(y[1])

+ null.est <- function(xx) {

+ xx * log(lambda) - lambda - lgamma(xx + 1)

+ }

+ log.N.hat <- null.est(1) - y[1]

+ panel.lines(1:10, -log.N.hat + null.est(1:10), col = "black")

+ panel.xyplot(x, y, ...)

+ })

13

depth

lo
g(

co
un

t)

0

2

4

6

8

10

5 10 15 20

●

●

●

●

●
●

● ●
● ●

● ● ● ●

●

●

●
●

● ●

ctcf

0

2

4

6

8

10

●

●

●

●

●

●

gfp

The above plot is very useful for detecting peaks, discussed in the next section. As a convenience, it can
be created for the coverage over all chromosomes for a single sample by calling the islandDepthPlot
function:

> islandDepthPlot(cov.ctcf)

14

Peaks

To obtain a set of putative binding sites, i.e., peaks, we need to find those regions that are significantly
above the noise level. Using the same Poisson-based approach for estimating the noise distribution as in
the plot above, the peakCutoff function returns a cutoff value for a specific FDR:

> peakCutoff(cov.ctcf, fdr = 0.0001)

[1] 6.984781

Considering the above calculation of 7 at an FDR of 0.0001, and looking at the above plot, we might
choose 8 as a conservative peak cutoff:

> peaks.ctcf <- slice(cov.ctcf, lower = 8)

> peaks.ctcf

SimpleRleViewsList of length 35
$chr1
Views on a 197195432-length Rle subject

views: NONE

$chr2
Views on a 181748087-length Rle subject

views: NONE

$chr3
Views on a 159599783-length Rle subject

views: NONE

...
<32 more elements>

To summarize the peaks for exploratory analysis, we call the peakSummary function:

> peaks <- peakSummary(peaks.ctcf)

The result is a RangedData object with two columns: the view maxs and the view sums. Beyond that,
this object is often useful as a scaffold for adding additional statistics.
It is meaningful to ask about the contribution of each strand to each peak, as the sequenced region of
pull-down fragments would be on opposite sides of a binding site depending on which strand it matched.
We can compute strand-specific coverage, and look at the individual coverages under the combined peaks
as follows:

> peak.depths <- viewMaxs(peaks.ctcf)

> cov.pos <- coverage(ctcf.ext[strand(ctcf.ext) == "+"])

> cov.neg <- coverage(ctcf.ext[strand(ctcf.ext) == "-"])

> peaks.pos <- Views(cov.pos, peaks.ctcf)

> peaks.neg <- Views(cov.neg, peaks.ctcf)

> wpeaks <- tail(order(peak.depths$chr10), 4)

> wpeaks

15

[1] 1407 2127 886 1179

Below, we plot the four highest peaks on chromosome 10.

16

> coverageplot(peaks.pos$chr10[wpeaks[1]], peaks.neg$chr10[wpeaks[1]])

Position

C
ov

er
ag

e

−40

−20

0

20

80750400 80750500 80750600 80750700 80750800 80750900

> coverageplot(peaks.pos$chr10[wpeaks[2]], peaks.neg$chr10[wpeaks[2]])

Position

C
ov

er
ag

e

−40

−20

0

20

126356100 126356200 126356300 126356400 126356500 126356600

17

> coverageplot(peaks.pos$chr10[wpeaks[3]], peaks.neg$chr10[wpeaks[3]])

Position

C
ov

er
ag

e

−40

−30

−20

−10

0

10

67475800 67475900 67476000 67476100 67476200 67476300

> coverageplot(peaks.pos$chr10[wpeaks[4]], peaks.neg$chr10[wpeaks[4]])

Position

C
ov

er
ag

e

−40

−20

0

20

77875600 77875700 77875800 77875900 77876000 77876100

18

Differential peaks

One common question is: which peaks are different in two samples? One simple strategy is the following:
combine the two peak sets, and compare the two samples by calculating summary statistics for the
combined peaks on top of each coverage vector.

> cov.gfp <- coverage(resize(cstest$gfp, 200))

> peaks.gfp <- slice(cov.gfp, lower = 8)

> peakSummary <- diffPeakSummary(peaks.gfp, peaks.ctcf)

> xyplot(asinh(sums2) ~ asinh(sums1) | space,

+ data = as.data.frame(peakSummary),

+ panel = function(x, y, ...) {

+ panel.xyplot(x, y, ...)

+ panel.abline(median(y - x), 1)

+ },

+ type = c("p", "g"), alpha = 0.5, aspect = "iso")

asinh(sums1)

as
in

h(
su

m
s2

)

0

2

4

6

8

10

0 2 4 6 8 10

chr10

0 2 4 6 8 10

chr11

0 2 4 6 8 10

chr12

We use a simple cutoff to flag peaks that are different.

> peakSummary <-

+ within(peakSummary,

+ {

+ diffs <- asinh(sums2) - asinh(sums1)

+ resids <- (diffs - median(diffs)) / mad(diffs)

+ up <- resids > 2

+ down <- resids < -2

+ change <- ifelse(up, "up", ifelse(down, "down", "flat"))

+ })

19

Placing peaks in genomic context

Locations of individual peaks may be of interest. Alternatively, a global summary might look at
classifying the peaks of interest in the context of genomic features such as promoters, upstream regions,
etc. The GenomicFeatures package facilitates obtaining gene annotations from different data sources.
Below, we download the UCSC gene predictions for the mouse genome and generate a GRanges object
with the transcript regions (from the first to last exon, contiguous).

> db <- makeTranscriptDbFromUCSC("mm9")

> gregions <- transcripts(db)

> gregions

GRanges with 49409 ranges and 2 elementMetadata values
seqnames ranges strand | tx_id tx_name

<Rle> <IRanges> <Rle> | <integer> <character>
[1] chr1 [4797974, 4832908] + | 14 uc007afg.1
[2] chr1 [4797974, 4836816] + | 15 uc007afh.1
[3] chr1 [4847895, 4887985] + | 16 uc007afi.1
[4] chr1 [4848119, 4880877] + | 17 uc007afj.1
[5] chr1 [5073254, 5089858] + | 20 uc007afm.1
[6] chr1 [5073254, 5152630] + | 21 uc007afn.1
[7] chr1 [5578574, 5592947] + | 22 uc007afo.1
[8] chr1 [5578574, 5592947] + | 23 uc007afp.1
[9] chr1 [5586599, 5592947] + | 24 uc007afq.1
...

[49401] chrY_random [42903555, 42936135] - | 49280 uc009vhr.1
[49402] chrY_random [43008001, 43010364] - | 49281 uc009vhs.1
[49403] chrY_random [44315018, 44341235] - | 49285 uc009vhw.1
[49404] chrY_random [46075785, 46078095] - | 49288 uc009vhz.1
[49405] chrY_random [48319175, 48321522] - | 49293 uc009vie.1
[49406] chrY_random [48388361, 48390745] - | 49294 uc009vif.1
[49407] chrY_random [50814754, 50817087] - | 49296 uc009vih.1
[49408] chrY_random [52063165, 52089373] - | 49298 uc009vij.1
[49409] chrY_random [52063165, 52089373] - | 49299 uc009vik.1

seqlengths
chr1 chr2 chr3 ... chrX_random chrY_random

197195432 181748087 159599783 ... 1785075 58682461

We can now estimate the promoter for each transcript:

> promoters <- flank(gregions, 1000, both = TRUE)

And count the peaks that fall into a promoter:

> peakSummary$inPromoter <- peakSummary %in% promoters

> xtabs(~ inPromoter + change, peakSummary)

change
inPromoter down flat

FALSE 3 6971
TRUE 0 776

20

Or somewhere upstream or in a gene:

> peakSummary$inUpstream <- peakSummary %in% flank(gregions, 20000)

> peakSummary$inGene <- peakSummary %in% gregions

> sumtab <-

+ as.data.frame(rbind(total = xtabs(~ change, peakSummary),

+ promoter = xtabs(~ change,

+ subset(peakSummary, inPromoter)),

+ upstream = xtabs(~ change,

+ subset(peakSummary, inUpstream)),

+ gene = xtabs(~ change, subset(peakSummary, inGene))))

Visualizing peaks in genomic context

While it is generally informative to calculate statistics incorporating the genomic context, eventually one
wants a picture. The traditional genome browser view is an effective method of visually integrating
multiple annotations with experimental data along the genome.
Using the rtracklayer package, we can upload our coverage and peaks for both samples to the UCSC
Genome Browser:

> library(rtracklayer)

> session <- browserSession()

> genome(session) <- "mm9"

> session$gfpCov <- cov.gfp

> session$gfpPeaks <- peaks.gfp

> session$ctcfCov <- cov.ctcf

> session$ctcfPeaks <- peaks.ctcf

Once the tracks are uploaded, we can choose a region to view, such as the tallest peak on chr10 in the
CTCF data:

> peak.ord <- order(unlist(peak.depths), decreasing=TRUE)

> peak.sort <- as(peaks.ctcf, "GRanges")[peak.ord]

> view <- browserView(session, peak.sort[1], full = c("gfpCov", "ctcfCov"))

We coerce to GRanges so that we can sort the ranges across chromosomes. By passing the full
parameter to browserView we instruct UCSC to display the coverage tracks as a bar chart. Next, we
might programmatically display a view for the top 5 tallest peaks:

> views <- browserView(session, head(peak.sort, 5), full = c("gfpCov", "ctcfCov"))

Version information

> sessionInfo()

R version 2.12.0 (2010-10-15)
Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

21

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[5] LC_MONETARY=C LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] BSgenome.Mmusculus.UCSC.mm9_1.3.16 GenomicFeatures_1.2.0
[3] chipseq_1.0.0 ShortRead_1.8.0
[5] Rsamtools_1.2.0 lattice_0.19-13
[7] BSgenome_1.18.0 Biostrings_2.18.0
[9] GenomicRanges_1.2.0 IRanges_1.8.0

loaded via a namespace (and not attached):
[1] Biobase_2.10.0 DBI_0.2-5 RCurl_1.4-3 RSQLite_0.9-2
[5] XML_3.2-0 biomaRt_2.6.0 grid_2.12.0 hwriter_1.2
[9] rtracklayer_1.10.0 tools_2.12.0

22

