
Analysis of bead-summary data using beadarray

Mark Dunning and Matt Ritchie

October 18, 2010

Introduction

Illumina have created an alternative microarray technology (BeadArray) based on randomly arranged
beads. A specific oligonucleotide sequence is assigned to each bead type, which is replicated about 30
times on an array. A series of decoding hybridisations is used to identify each bead on the array. The
high degree of replication makes robust measurements for each bead type possible.

BeadArrays are used in many applications, including gene expression studies, SNP genotyping and
methylation profiling and are processed in parallel as a Sentrix Array Matrix (SAM) or BeadChip. A
SAM is a plate of 96 uniquely prepared hexagonal BeadArrays, each of which contains around 1,500
bead types. The BeadChip technology comprises a series of rectangular strips on a slide with each
strip containing about 24,000 bead types. For example, there are six pairs of strips on each Human-6
BeadChip. Depending on the particular assay used, the data from a BeadArray may be single channel
or two-colour.

The data from Illumina BeadArrays is available in different formats. We refer to the raw TIFF
images and text files output by the BeadScan software as bead-level data. For details on how to use the
beadarray package to read in and process this kind of data, refer to the bead-level user’s guide which
can be launched with the following command

> library(beadarray)

> beadarrayUsersGuide(topic = "beadlevel")

The second format is produced by Illumina’s BeadStudio software. We refer to this output as bead-
summary data as these files contain summary intensities for each bead type on each array. In this user
guide we describe how to process summarised gene expression data from Illumina BeadArrays using the
beadarray package. Most of the analysis outlined in this guide can equally be applied to the summary
values produced by reading and processing the bead-level data using beadarray.

1 Importing bead-summary data

BeadStudio is Illumina’s proprietary software for analysing raw bead-level data from BeadScan. It
contains different modules for analysing data from different platforms. For further information on the
software and how to export summarised data, refer to the user’s manual. In this section we consider
how to read in and analyse BeadStudio output from the gene expression module.

We will demonstrate the functionality of beadarray using example data available from Illuminas
website

http://www.switchtoi.com/datasets/asuragenmadqc/AsuragenMAQC_BeadStudioOutput.zip

This dataset, provided courtesy of Asuragen, Inc., contains three labeling replicates each of the
”A” and ”B” MAQC samples (6 samples total) hybridized on HumanWG-6 v2 arrays. The follow-
ing code can be used to read the example data into R (provided that the contents of Asuragen-

MAQC_BeadStudioOutput.zip have been extracted to the current working directory).

1

> library(beadarray)

> dataFile = "AsuragenMAQC-probe-raw.txt"

> qcFile = "AsuragenMAQC-controls.txt"

> BSData = readBeadSummaryData(dataFile = dataFile,

+ qcFile = qcFile, controlID = "ProbeID",

+ skip = 0, qc.skip = 0, qc.columns = list(exprs = "AVG_Signal",

+ Detection = "Detection Pval"))

The arguments of readBeadSummaryData can be modified to suit data from versions 1, 2 or 3
of BeadStudio. The current default settings should work for version 3 output. Users may need to
change the argument sep, which specifies if the dataFile is comma or tab delimited and the skip

argument which specifies the number of lines of header information at the top of the file. Possible
skip arguments of 0, 7 and 8 have been observed, depending on the version of BeadStudio or way in
which the data was exported. The columns argument is used to specify which column headings to
read from dataFile and store in various matrices. Note that the naming of the columns containing
the standard errors changed between versions of BeadStudio (earlier versions used BEAD STDEV in
place of BEAD STDERR - be sure to check that the columns argument is appropriate for your data).
Equivalent arguments (qc.sep, qc.skip and qc.columns) are used to read the data from qcFile. See
the help page (?readBeadSummaryData) for a complete description of each argument to the function.
Control information from Illumina experiments can also be read into beadarray independently using the
readQC function.

2 The BSData object

BSData is an object of type ExpressionSetIllumina which is an extension of the ExpressionSet class from
the Biobase package. Objects of this type use a series of slots to store the data.

> BSData

ExpressionSetIllumina (storageMode: list)

assayData: 50121 features, 6 samples

element names: exprs, se.exprs, nObservations, Detection

protocolData: none

phenoData

rowNames: SUHRR-1 SUHRR-2 ... Brain-3 (6

total)

varLabels: sampleID

varMetadata: labelDescription

featureData

featureNames: 20605 3450747 ... 7650743

(50121 total)

fvarLabels: ProbeID TargetID ... Status (5

total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation:

QC Information

Available Slots:

featureNames:

sampleNames:

> dim(BSData)

2

Features Samples

50121 6

> slotNames(BSData)

[1] "QC" "channelData"

[3] "assayData" "phenoData"

[5] "featureData" "experimentData"

[7] "annotation" "protocolData"

[9] ".__classVersion__"

> names(assayData(BSData))

[1] "exprs" "se.exprs"

[3] "nObservations" "Detection"

> exprs(BSData)[1:5, 1:2]

SUHRR-1 SUHRR-2

20605 141.84740 136.70080

3450747 192.98100 193.43690

3060450 178.69660 176.77010

870131 83.29353 84.60507

5310368 88.46398 96.38007

> se.exprs(BSData)[1:5, 1:2]

SUHRR-1 SUHRR-2

20605 3.343350 3.793267

3450747 5.626391 7.036246

3060450 4.347808 4.339916

870131 2.742022 3.125126

5310368 2.777152 3.225832

> fData(BSData)[1:10,]

ProbeID TargetID PROBE_ID SYMBOL

20605 20605 15E1.2 ILMN_1809034 15E1.2

3450747 3450747 2'-PDE ILMN_1660305 2'-PDE

3060450 3060450 76P ILMN_1792173 76P

870131 870131 7A5 ILMN_1762337 7A5

5310368 5310368 A1BG ILMN_1736007 A1BG

770300 770300 A2BP1 ILMN_1787689 A2BP1

3290546 3290546 A2BP1 ILMN_1731507 A2BP1

3420601 3420601 A2BP1 ILMN_1814316 A2BP1

7400044 7400044 A2M ILMN_1745607 A2M

2100711 2100711 A2ML1 ILMN_1757454 A2ML1

Status

20605 Gene

3450747 Gene

3060450 Gene

870131 Gene

5310368 Gene

3

770300 Gene

3290546 Gene

3420601 Gene

7400044 Gene

2100711 Gene

The data from the file SampleProbeProfile.txt is stored in the assayData slot of the object.
This slot contains a number of matrices, each of which has a column for each array in the experiment
and a row for each probe. There is a matrix for each column specified by the columns parameter in
readBeadSummaryData. If the character strings specified in columns cannot be matched in the file, the
matrix will be filled with NAs.

For consistency with the definition of other ExpressionSet objects, we now refer to the expression
values as the exprs matrix which can be accessed using exprs and subsetted in the usual manner. Sim-
ilarly, the standard errors for each bead, which are stored in the se.exprs matrix can be accessed using
se.exprs. The number of beads and detection scores can be accessed using the functions nObserva-

tions and Detection respectively. The rows names of each of these matrices are from the column in
SampleProbeProfile.txt that matches the ProbeID argument of readBeadSummaryData.

Sample information for the experiment can be accessed using pData.

3 Quality assessment and normalisation

Boxplots of intensity levels and the number of beads are useful for quality assessment purposes. Below
is the code to produce boxplots of these quantities for each array in the experiment.

> par(mfrow = c(1, 2))

> boxplot(as.data.frame(log2(exprs(BSData))),

+ las = 2, outline = FALSE, ylab = "log2(intensity)")

> boxplot(as.data.frame(nObservations(BSData)),

+ las = 2, outline = FALSE, ylab = "number of beads")

S
U

H
R

R
−

1

S
U

H
R

R
−

2

S
U

H
R

R
−

3

B
ra

in
−

1

B
ra

in
−

2

B
ra

in
−

3

6.0

6.5

7.0

7.5

lo
g2

(in
te

ns
ity

)

S
U

H
R

R
−

1

S
U

H
R

R
−

2

S
U

H
R

R
−

3

B
ra

in
−

1

B
ra

in
−

2

B
ra

in
−

3

20

30

40

50

60

nu
m

be
r

of
 b

ea
ds

> plotMAXY(exprs(BSData), arrays = 1:3,

+ pch = 16)

4

0.6 0.8 1.0 1.2 1.4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Index

SUHRR−1
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

● ●

●●

●

●

●

●

●

●● ●

●

●
●

●●

●

●●●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

6 8 10 12 14

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
● ●●●

● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
● ●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●●

●

●

●

● ●
●

●

●
●●

●●
●●

6 8 10 12 14

−
2

−
1

0
1

2

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●●

●
●●●

●●●
●

●●●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●
●●●●●●●

●

●

●●

●

●

●

●
●●●

●●●●
●●●●

●●●●

●
●●

●

●●●●●●●●

●

6
8

10
12

14

0.6 0.8 1.0 1.2 1.4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Index

0 SUHRR−2 ●

●

●

●

●

●

●
●

●

●

●
●

●●

●●

● ●

●
●

● ●
●

●
●

●
●

●

●

●

●
●

● ●

●
●

●
●

●

●●

●

●
●

●

● ●
●

●

●

●●

●
●

●

●
● ●

●

●●
●●

●

●

●
●

● ●

●●

●

●
●

●●

●

●
●

●
●

●

● ●●

●

●
●

●

● ●●
●

●

●

●● ●

●

●

−
2

−
1

0
1

2

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●
●
●
●●●

●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●● ●●

●● ●

●●●●●

●

●

●

●

●●

●●●

●●

●

●●●

●
●●●

●●●
●●●

6 8 10 12 14 16

6
8

10
12

14

●

●

●

●●

●

●

●
●

●

●●
●

●

●●●
●●●

●●
●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●
●●●

●

●●●●●

●●
●

●●
●●●

●

●●●

●

●

●

●

●●●

●●●●
●●●●
●

●
●●●

●●●●

●

●●

●

●●

●●

●●●

6 8 10 12 14 16 0.6 0.8 1.0 1.2 1.4
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

0 SUHRR−3

In the top right corner we see the MA plots for all pairwise comparisons involving the 3 arrays. On
an MA plot, for each probe we plot the average of the log2-intensities from the two arrays on the x-axis
and the difference in intensities (log2-ratios) on the y-axis. For replicate arrays we would expect all
probes to be unchanged between the two samples and hence most points on the plot should lie along
the line y=0. In the lower left corner of the MAXY plot we see the XY plot and for replicate arrays we
would expect to see most points along the diagonal y = x. From this MAXY plot it is obvious that the
second array is systematically different to the other replicates and may benefit from normalisation.

Both XY and MA plots are available separately for a particular comparison of arrays using plotXY

and plotMA.
To correct for differences in expression level across a chip and between chips we need to normalise

the signal to make the arrays comparable. The normalisation methods available in the affy package, or
variance-stabilising transformation from the lumi package may be applied using the normaliseIllumina
function. Below we quantile normalise the log2 transformed data.

> BSData.quantile = normaliseIllumina(BSData,

+ method = "quantile", transform = "log2")

> plotMAXY(exprs(BSData.quantile), arrays = 1:3,

+ log = FALSE, pch = 16)

Other normalisation options include robust-spline normalisation from the lumi package, and normexp
background correction and quantile normalisation using the negative control probes (Shi et al (2010)
Optimizing the noise versus bias trade-off for Illumina whole genome expression BeadChips. Nucleic
Acids Research).

> BSData.rsn = normaliseIllumina(BSData,

+ method = "rsn", transform = "log2")

2010-10-18 14:03:07 , processing array 1

2010-10-18 14:03:08 , processing array 2

2010-10-18 14:03:08 , processing array 3

2010-10-18 14:03:09 , processing array 4

2010-10-18 14:03:09 , processing array 5

2010-10-18 14:03:10 , processing array 6

5

> BSData.neqc = normaliseIllumina(BSData,

+ method = "neqc")

4 Differential expression

The differential expression methods available in the limma package can be used to identify differentially
expressed genes. The functions lmFit and eBayes can be applied to the normalised data.

In the example below, we set up a design matrix for the example experiment and fit a linear model
to summarise the data from the UHRR and Brain replicates to give one value per condition. We then
define contrasts comparing the Brain sample to the UHRR and calculate moderated t-statistics with
empirical Bayes’ shrinkage of the sample variances. In this particular experiment, the Brain and UHRR
samples are very different and we would expect to see many differentially expressed genes.

Filtering un-informative probes in a microarray experiment is a way of reducing the number of
multiple tests performed and increases the power of a differential expression analysis. Here we use
the detection score calculated by Illumina for filtering. The detection score is a standard measure for
Illumina expression experiments, and can be viewed as an empirical estimate of the p-value for the null
hypothesis that there is no expression. We also add an additonal first step to remove any probes in the
data that are control probes

> BSData.genes = BSData.quantile[which(fData(BSData)$Status ==

+ "Gene"),]

> expressed = apply(Detection(BSData.genes) <

+ 0.05, 1, any)

> BSData.filt = BSData.genes[expressed,

+]

> library(limma)

> samples = c(rep("UHRR", 3), rep("Brain",

+ 3))

> samples

[1] "UHRR" "UHRR" "UHRR" "Brain" "Brain"

[6] "Brain"

> samples = as.factor(samples)

> design = model.matrix(~0 + samples)

> colnames(design) = levels(samples)

> fit = lmFit(exprs(BSData.filt), design)

> cont.matrix = makeContrasts(BrainDiff = Brain -

+ UHRR, levels = design)

> fit = contrasts.fit(fit, cont.matrix)

> fit$genes = fData(BSData.filt)

> ebFit = eBayes(fit)

> topTable(ebFit, coef = 1, number = 5)

ProbeID TargetID PROBE_ID SYMBOL Status

6248 6400079 HBG2 ILMN_1758159 HBG2 Gene

6247 4150187 HBG1 ILMN_1796678 HBG1 Gene

18554 4480474 SNAP91 ILMN_1733648 SNAP91 Gene

14474 1110528 MT3 ILMN_1675947 MT3 Gene

6242 5340674 HBB ILMN_1769753 HBB Gene

logFC AveExpr t P.Value

6

6248 -7.296183 10.396706 -136.2996 8.464141e-33

6247 -7.254827 10.448647 -126.5584 4.095088e-32

18554 6.581136 9.703015 122.1168 8.751802e-32

14474 6.548677 10.011302 118.4414 1.675750e-31

6242 6.042642 9.464483 116.3582 2.443473e-31

adj.P.Val B

6248 1.823430e-28 64.60597

6247 4.411024e-28 63.22185

18554 6.284669e-28 62.54366

14474 9.025172e-28 61.95808

6242 1.052795e-27 61.61584

For more information about lmFit and eBayes, refer to the limma documentation.

Annotation

Within Bioconductor, annotation packages are available for most types of Illumina BeadChips. For this
experiment, the illuminaHumanv1 package can be used to provide further information on each probe.
Custom annotations available from http://www.compbio.group.cam.ac.uk/Resources/Annotation/

can also be used.

> library(illuminaHumanv2.db)

> illuminaHumanv2()

> ids = fData(BSData)[, 3]

> ids = ids[-which(is.na(ids))]

> chr = mget(ids, illuminaHumanv2CHR, ifnotfound = NA)

> chrloc = mget(ids, illuminaHumanv2CHRLOC,

+ ifnotfound = NA)

> refseq = mget(ids, illuminaHumanv2REFSEQ,

+ ifnotfound = NA)

> genename = mget(ids, illuminaHumanv2GENENAME,

+ ifnotfound = NA)

> symbol = mget(ids, illuminaHumanv2SYMBOL,

+ ifnotfound = NA)

> anno = cbind(Ill_ID = as.character(ids),

+ Chr = as.character(chr), Loc = as.character(chrloc),

+ RefSeq = as.character(refseq), Name = as.character(genename),

+ Symbol = as.character(symbol))

> ebFit$genes = anno

> topTable(ebFit)

> write.fit(ebFit, file = "results.txt")

5 Further analysis

The clustering functionality available in BeadStudio can be performed in R using the hclust function
once a distance matrix has been defined. The heatmap function could also be used.

> d = dist(t(exprs(BSData.quantile)))

> plot(hclust(d), labels = samples)

7

U
H

R
R

U
H

R
R

U
H

R
R

B
ra

in

B
ra

in

B
ra

in

20
40

60
80

10
0

12
0

Cluster Dendrogram

hclust (*, "complete")
d

H
ei

gh
t

This user guide was built using the following packages:

> sessionInfo()

R version 2.13.0 Under development (unstable) (2010-10-05 r53184)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_GB.utf8

[2] LC_NUMERIC=C

[3] LC_TIME=en_GB.utf8

[4] LC_COLLATE=en_GB.utf8

[5] LC_MONETARY=C

[6] LC_MESSAGES=en_GB.utf8

[7] LC_PAPER=en_GB.utf8

[8] LC_NAME=C

[9] LC_ADDRESS=C

[10] LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_GB.utf8

[12] LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils

[5] datasets methods base

other attached packages:

[1] limma_3.5.20 lumi_2.1.6

[3] beadarray_1.99.3 hwriter_1.2

[5] Biobase_2.9.2

8

loaded via a namespace (and not attached):

[1] affy_1.27.3 affyio_1.17.4

[3] annotate_1.27.1 AnnotationDbi_1.11.8

[5] DBI_0.2-5 grid_2.13.0

[7] hdrcde_2.14 KernSmooth_2.23-3

[9] lattice_0.18-8 MASS_7.3-7

[11] Matrix_0.999375-42 methylumi_1.3.3

[13] mgcv_1.6-2 nlme_3.1-96

[15] preprocessCore_1.11.0 RSQLite_0.9-2

[17] xtable_1.5-6

9

	Importing bead-summary data
	The BSData object
	Quality assessment and normalisation
	Differential expression
	Further analysis

