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1 Introduction
This vignette focuses on common use cases involving the GenomicRanges package.

> library(GenomicRanges)

2 Chip-seq analysis

This section presents an example workflow using a subset of the ChIP-seq data for origin recognition complex
(ORC) binding sites in Saccharomyces cerevisiae from the paper Conserved nucleosome positioning defines
replication origins, Eaton et. al. (PMID 20351051). The subset consists of all the MAQ alignments to
chromosome XIV for two replicates of ORC ChIP-seq data and is contained in the Bioconductor package
EatonEtAIChIPseq. For illustration purposes we will focus on the first replicate.

> library(EatonEtAl1ChIPseq)
> data(orcAlignsRep1)
> orcAlignsRepl

class: AlignedRead
length: 478774 reads; width: 39 cycles

chromosome: chrXIV chrXIV ... chrXIV chrXIV
position: 2 4 ... 784295 784295
strand: + - ... + +

alignQuality: IntegerQuality
alignData varLabels: nMismatchBestHit mismatchQuality nExactMatch24 nOneMismatch24

2.1 Filtering alignments

In this subsection we will demonstrate how to perform three filtering operations on alignments produced by
the MAQ software through the following restrictions:

e Number of mismatches in alignment must be < 3 (guideline specified in paper)
e No duplicates of {chromosome, strand, position} combinations (PCR bias correction)

e An alignment on one strand must have a plausible alignment on the complementary strand (“pseudo”
paired-read restriction)

The first two restrictions can be implemented using functionality from the ShortRead package, while the last
one can be performed using operations within the GenomicRanges package.



In the previous section we loaded the orcAlignsRepl object, an instance of the ShortRead class Aligne-
dRead. This object contains information on the characteristics of the read as well as its alignment to a
reference genome, including information on the number of mismatches for the best alignment. Using func-
tionality from the ShortRead package we can perform the first two filtering operations, which result in a
subset that is roughly 18% of the size of the original MAQ alignment file.

> subsetRepl <- orcAlignsRepl[alignData(orcAlignsRepl) [["nMismatchBestHit"]] <=
+ 3L]
> length(subsetRepl)/length(orcAlignsRepl)

[1] 0.96655

> subsetRepl <- subsetRepl[occurrenceFilter(withSread = FALSE) (subsetRepl)]
> length(subsetRepl)/length(orcAlignsRepl)

[1] 0.180722
> subsetRepl

class: AlignedRead
length: 86525 reads; width: 39 cycles

chromosome: chrXIV chrXIV ... chrXIV chrXIV
position: 2 5 ... 784294 784295
strand: + + ... - +

alignQuality: IntegerQuality
alignData varLabels: nMismatchBestHit mismatchQuality nExactMatch24 nOneMismatch24

The last filtering criterion, a “pseudo” paired-read filter, requires an understanding of the interval spans
for the alignments rather than just the “leftmost” alignment location, i.e. start location on the positive strand
or end location on the negative strand, represented in the AlignedRead class. As such we will coerce the
alignment subset contained in subsetRepl to a GRanges object using a coerce method from the ShortRead
package.

> rangesRepl <- as(subsetRepl, "GRanges")
> head(rangesRepl, 3)

GRanges with 3 ranges and 4 elementMetadata values

seqnames ranges strand | nMismatchBestHit mismatchQuality
<Rle> <IRanges> <Rle> | <integer> <integer>
[1] chrXIV  [2, 40] + | 0 0
[2] chrXIV [5, 43] + 0 0
[3] chrXIV [6, 44] + 1 4
nExactMatch24 nOneMismatch24
<integer> <integer>
[1] 5 0
[2] 5 0
[3] 6 0
seqlengths
chrXIV
NA

AlignedRead objects lack information on chromosome length, so we will add it to the new rangesRep1
object.



> seqlengths(rangesRepl) <- 784333

For our “pseudo” paired-read filter, we will use the authors’ estimate of the mean fragment length (around
150 base pairs). In particular, we will construct a filter where each alignment on the plus strand must have
a corresponding alignment somewhere within [100, 200] bp downstream on the minus strand and vice versa
with those alignments on the minus strand.

This filtering process can be achieved through an interval overlap operation between the starts of the
alignments on the minus strand and the projected end of the alignments on the plus strand, where the former
can be derived by the code

> negRangesRepl <- rangesRepl[strand(rangesRepl) == "-"]
> negStartsRepl <- resize(negRangesRepl, 1)

and the latter by the code

> posRangesRepl <- rangesRepl[strand(rangesRepl) == "+"]
> posEndsRepl <- shift(posRangesRepl, 99)

> posEndsRepl <- resize(posEndsRepl, 100)

> strand(posEndsRepl) <- "-"

The results of the interval overlap are shown below. This filter flagged roughly 4.5% of the remaining
alignments for removal, resulting in keeping 17.3% of the original set of alignments when including the results
of the first two filtering steps.

> strandMatching <- findOverlaps (negStartsRepl, posEndsRepl)
> posKeep <- unique(subjectHits(strandMatching))

> negKeep <- unique(queryHits(strandMatching))

> length(posKeep)/length(posEndsRepl)

[1] 0.9559064

> length(negKeep)/length(negStartsRepl)

[1] 0.9554474

> (length(posKeep) + length(negKeep))/length(orcAlignsRepl1)
[1] 0.1727120

> posFilteredRangesRepl <- posRangesRepl[posKeep]
> negFilteredRangesRepl <- negRangesRepl[negKeep]

2.2 Finding peaks

Once the alignments have been filtered, they can be aggregated into coverage vectors. Assuming the size of
the reads are uniformly distributed within [100, 200] base pairs, we will generate a coverage vector by giving
full weight to alignments within 100 bp upstream and then linearly decreasing weights for the next 100 bp
upstream. For the runwtsum function from IRanges, these weights for the positive and negative strands are
expressed by the vectors:

> posWeights <- c(seq(0.01, 1, length = 100), rep(c(1, 0),
+ c(101, 200)))

> negWeights <- rev(posWeights)

> plot(-200:200, posWeights, xlab = "Relative Position",
+ ylab = "Coverage Weight", type = "1")
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Figure 1: Coverage weights for positive strand weighted sums.

The first step in constructing this coverage vector is to tabulate the alignments by their start positions
on both the positive and negative strand. We will use the coverage function on these start values, which
will produce RleList representations of the coverage vectors.

> posStartsCoverRepl <- coverage(resize(posFilteredRangesRepl,

+ 1))
> negStartsCoverRepl <- coverage(resize(negFilteredRangesRepl,
+ 1))

The second step in the process is aggregating upstream alignments using the posWeights and negWeights
objects defined above.

> posExtCoverRepl <- round(runwtsum(posStartsCoverRepl, k = 401,
+ wt = posWeights, endrule = "constant"))
> negExtCoverRepl <- round(runwtsum(negStartsCoverRepl, k = 401,
+ wt = negWeights, endrule = "constant"))

Before we proceeded any further, we will define two plot functions for visualizing coverage vectors:
plotCoverage for displaying a single coverage vector and plotStrandedCoverage for displaying back-to-
back coverage vectors for dual-stranded data.

> plotCoverage <- function(x, xlab = "Position", ylab = "Coverage",
+ o)t

+ plot(c(start(x), length(x)), c(runValue(x), tail(runValue(x),
+ 1)), type = "s", col = "blue", xlab = xlab, ylab = ylab,
+ )

+ }

>

plotStrandedCoverage <- function(positive, negative, xlab = "Position",
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Figure 2: Plot of coverage across chromosome XIV.

+ ylab = "Coverage", ...) {

+ ylim <- min(max(positive), max(negative)) * c(-1, 1)

+ plotCoverage(positive, ylim = ylim, ...)

+ lines(c(start(negative), length(negative)), -c(runValue(negative),
+ tail (runValue(negative), 1)), type = "s", col = "red")

+ abline(h = 0, col = "dimgray")

+ }

The coverage across chromosome XIV of the filtered alignements is shown in Figure In general this
plot shows a near mirror image of coverage vectors between the positive and negative strand.

> plotStrandedCoverage (posExtCoverRepl[[1]], negExtCoverRepl[[1]])

To reduce these measures to a single dimension, we will be conservative and choose the smallest value
between the positive and negative strand coverage vectors using the pmin method for RleList objects.



> combExtCoverRepl <- pmin(posExtCoverRepl, negExtCoverRepl)
> quantile(combExtCoverRepl, c(0.5, 0.9, 0.95))

chrXIV
50% 4
90% 10
95% 14

We now can call peaks off the combined coverage object combExtCoverRepl. Since the median height
for the combined coverage on chromosome XIV is 4, we can limit our attention to areas on the chromosome
with coverage > 5 using the slice function. From there we can derive a heuristic for a significant peaks as
those achieving a maximum height > 28, which selects 22 peaks.

> peaksRepl <- slice(combExtCoverRepl, lower = 5)
> peakMaxsRepl <- viewMaxs (peaksRepl)
> tail(sort(peakMaxsRep1[[1]]), 30)

[1] 22 22 22 23 23 23 24 25 28 29 29 32 41 51 51 58 61
[18] 64 66 69 73 73 74 75 83 89 90 114 116 137

> peaksRepl <- peaksRepl[peakMaxsRepl >= 28]

> peakRangesRepl <- GRanges("chrXIV", as(peaksRep1[[1]],
+ "IRanges"), seqlengths = seqlengths(rangesRepl))
> length(peakRangesRep1)

[1] 22

We can now compare the significant peaks we selected with those selected by the authors. Using interval
comparison tools, we see there is general agreement between our peaks and those of the authors.

> data(orcPeaksRep1)
> countOverlaps (orcPeaksRepl, peakRangesRepl)

[fJ11111111111111111111
> countOverlaps (peakRangesRepl, orcPeaksRepl)

[M1o201111111112110011111

3 Simple RNA-seq Analysis

For the first example we will focus on RNA-seq analysis, but these tools can also be applied to other kinds of
short read data analysis. It is also necessary to consider limitations imposed by BAM files and the way that
they are read in. BAM files can contain things that align to multiple places (multi-reads) and this makes
things more complex since we don’t know which things were aligned in this way. Therefore, if these things
are not filtered out beforehand by the aligner, we will be counting some reads multiple times. Also, because
alignments consider the per base qualities of a sequence, it is also possible for the same called sequence to
be aligned onto two different places. When we scan in the BAM file, these sequences will be read in based
on their predicted positions from the aligner. Thus, they can count as different sequences even though they
appear to be the same sequence (based on their base pairs).

Let’s begin by using the Rsamtools to retrieve some data from a yeast experiment and load it into a
GappedAlignments object. Here we will load in a single file that contains RNA-seq data aligned from a wild
type yeast experiment. This particular file only has data from chromosome 13. While more data can be
loaded, we will limit our analysis to this subset for expediency purposes.



> library(Rsamtools)
> testFile <- system.file("bam", "isowt5_13e.bam", package = "leeBamViews")
> aligns <- readBamGappedAlignments(testFile)

At this point, we also have to consider carefully which build we have so that we can know which anno-
tation we need. This data is from Lee et al (PMID 19096707), which is available in the leeBam Views data
package. This data originates from Gavin Sherlock’s group at Stanford and so naturally they designed their
experiments with the SGD genomes in mind. Therefore, it is probably reasonable to use the SGD genome
assembly data for Saccharomyces cerevisiae when looking at their data. This data is available from UCSC
and is therefore also accessible through the rtracklayer, BSGenome and GenomicFeatures packages.

3.1 Getting relevant genomic annotations

Now that we have chosen a data source to match the data that the genes were aligned to, we can simply get
relevant annotation data to go with it. The following code will load the GenomicFeatures package, and then
create an annotation database based on material from the sgdGene track.

> library(GenomicFeatures)
> txdb <- makeTranscriptDbFromUCSC(genome = "sacCer2", tablename = "sgdGene")

Then we simply have to retrieve data from the database using the exonsBy method so that only exonic
locations for each transcript will be retrieved by setting the by argument to "tx".

> exonRanges <- exonsBy(txdb, "tx")
> length(exonRanges)

[1] 6717
> exonRanges[1]

GRangesList of length 1

$1
GRanges with 1 range and 3 elementMetadata values
seqnames ranges strand | exon_id exon_name exon_rank
<Rle> <IRanges> <Rle> | <integer> <character> <integer>
[1] chrI [130802, 131986] + | 1 NA 1
seqlengths
chrlV chrXV chrVII chrXII ... chrVl chrl chrM 2micron
1531919 1091289 1090947 1078175 ... 270148 230208 85779 6318

At this point, in spite of using the matching annotations for the data, there is still a discrepancy in how
the chromosomes were named from one source to the next. In our data these all start with ”Sc”, whereas
in the annotations they do not. Also, numbers of the chromosomes for the annotation are given in classic
Roman numerals (as is traditional for yeast). So let’s recode the alignments to conform with the exon
annotations.

> levels(rname(aligns))

[1] "Scchr01" "Scchr02" "Scchr03" "Scchr04" "Scchr05" "Scchr06"
[7] "Scchr07" "Scchr08" "Scchr09" "Scchri0" "Scchrill" "Scchri2"
[13] "Scchri13" "Scchri14" "Scchri5" "Scchri6" "Scmito"

> levels(rname (aligns)) <- c(paste("chr", as.roman(1:16),
+ sep = nn)’ ”chrM")



3.2 Counting reads that overlap the annotations

Now we can count how many reads mapped to each transcript. And, since the exonRanges object only has
ranges for exons, this use of countOverlaps will only consider the exon space when calculating the counts
for each.

> counts <- countOverlaps (exonRanges, aligns)

For simplicities sake, we will now calculate the RPKM. This is not meant as an endorsement of any one
measure over any other, it’s just being used here as an example that users will probably have encountered
before. Using the annotation object, we can also get the number of bases representing each exonRanges
element. Note that this sum also only includes bases that are represented by the exons from each transcript.

> numBases <- sum(width(exonRanges))
> geneLengthsInKB <- numBases/1000

And from this we could (as an example) calculate the sum of the mappable reads and then calculate the
RPKMs. To do that we first would need to calculate the total number of reads being considered by the
experiment in millions of reads.

> millionsMapped <- sum(counts)/le+06

Then we have to calculate the RPM by considering the number of reads for each transcript relative to
this value.

> rpm <- counts/millionsMapped

Finally, we calculate the RPKM by adjusting each RPM measurement for the length of the transcript in
Kb.

> rpkm <- rpm/geneLengthsInKB

Once we have calculated a measure of gene expression, we might find it convenient to put it into a table
as is expected by the DESeq package. To do this, we have to consider that we will probably want to do just
the above steps that collect the raw counts and then place those vectors into a data.frame or matrix as a
column. For the sake of saving space, lets assume you did that and created another vector called counts2,
then you could create your DESeq object like this:

> deframe <- data.frame(counts, counts2)

This will work in this case for as many other samples as you choose to process because the countOvelaps
method is always using the same exonRanges object to quantify overlap regions with.

3.3 Identifying and learning more about interesting transcripts

Now that we have calculated the RPKM, we can start to ask basic questions about the results. For example,
which of the transcripts had the two highest scores? We can get this easily, because rpkm and exonRanges
will both be listed in the same order.

> sortedRPKM <- sort (rpkm)
> highScoreGenes <- tail (sortedRPKM)

From the above output, notice how the names of the sortedRPKM are the same as the index of exonRanges
we need to retrieve? We can therefore see that transcript 6678 and 6676 are also the IDs of the transcript with
the highest RPKM. So we can use the transcripts accessor learn which gene that transcript is associated
with like this:



> txs <- transcripts(txdb, vals = list(tx_id = names(highScoreGenes)),
+ columns = c("tx_id", "gene_id"))
> systNames <- as.vector(unlist(elementMetadata (txs) ["gene_id"]))

Once you know the gene id, you can use gene-centric annotation data sources such as the org.Sc.sgd.db
package to learn more about it:

> library(org.Sc.sgd.db)
> toTable(org.Sc.sgdGENENAME [systNames])

systematic_name gene_name

1 YMR297W PRC1
2 YMR305C SCW10
3 YMR307W GAS1

If you wish, you can also use these systematic names to replace the rownames in any DESeq frame objects
that you create.

3.4 Identifying reads that do NOT overlap known annotation

At this point you might be satisfied with calculating the amount of known genes in your model, but what if
you wanted to know about regions that were transcribed but which were NOT found amongst the annotated
transcripts? To look at these you would first want to filter out transcripts that are known from your dataset
using subsetBy0Overlaps.

> filtData <- subsetByOverlaps(aligns, exonRanges)
> length(filtData)

[1] 17311

At this point, the filtData object only contains ranges that did not overlap with any of the known exons
from Saccharomycess cerevisiae. It is interesting to note that in spite of having removed all known exons,
this object still contains about half of the original set of aligned reads.

If a coarser level of filtering is desired, you could also use the output of transcriptsBy as the subject
argument for subsetByOverlaps. Doing so would look like this:

> filtData2 <- subsetByOverlaps(aligns, transcriptsBy(txdb,
+ llgene”))
> length(filtData2)

[1] 17312

In this specific case, you can see that not many additional things have been filtered out by the coarser
filtering which indicates that not many of these unknown aligned reads are from intronic or untranslated
regions. This makes sense, since introns in yeast tend to be rare, infrequent and small. Going forward in
this example, we will use the set that has only filtered out the exons just so that we can look at the set of
reads that is complementary to the ones we just counted.

The next step in looking for transcripts that are unknown is to see where the reads are located on the
genome. To do that we will use a function originally developed for chip-seq analysis. The coverage method.

> cov <- coverage(filtData)

Since we only have data for chromosome 13, lets subset down to that. Notice that in using the coverage
method we lose the strand information. This is ok in this case, since the experiment has not preserved the
strand information anyhow. If you had data that measured each strand separately, then you would want to
call coverage twice at this point to keep the results separated.



> cov <- cov[13]

And now we can slice that data so that we only consider islands where things are continuously at least
one read deep.

> islands <- slice(cov, lower = 1)

Having identified those, we can then filter out just the islands where the final width is at least 1000 bases
long.

> transcribedRegions <- islands[width(islands) > 1000]
> txr <- islands[width(islands) > 1000]

Finally, we should then be able to go back to the BSGenome object and retrieve the actual sequences. In
order to recover these sequences, we are going to specify that this data came from chromosome 13, and we
will just retrieve the plus strand version of each (since the experiment collapsed that data anyhow).

> library(BSgenome.Scerevisiae.UCSC.sacCer2)

> getYeastSequence <- function(data) {

+ chr <- rep("chrXIII", length(start(datal[11])))
+ starts <- start(datal[[1]])

+ ends <- end(data[[1]])

+ strands <- rep("+", length(start(datal[[1]])))

+ getSeq(Scerevisiae, names = chr, start = starts, end = ends,
+ strand = strands)

+ F
> DNASet <- DNAStringSet(getYeastSequence (transcribedRegions))

4 Session Information
The version number of R and packages loaded for generating the vignette were:

R version 2.12.1 (2010-12-16)
Platform: x86_64-unknown-linux-gnu (64-bit)

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[56] LC_MONETARY=C LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets methods
[7] base

other attached packages:
[1] BSgenome.Scerevisiae.UCSC.sacCer2_1.3.16
[2] BSgenome_1.18.2
[3] org.Sc.sgd.db_2.4.6
[4] RSQLite_0.9-4
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(5]
(6]
(7]
(8l
(9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]

loaded via a namespace (and not attached):

[1] XML_3.2-0 biomaRt_2.6.0 grid_2.12.1

DBI_0.2-5
AnnotationDbi_1.12.0
Biobase_2.10.0
GenomicFeatures_1.2.3
EatonEtAl1ChIPseq_0.0.1
rtracklayer_1.10.6
RCurl_1.5-0
bitops_1.0-4.1
ShortRead_1.8.2
lattice_0.19-17
Rsamtools_1.2.2
Biostrings_2.18.2
GenomicRanges_1.2.3
IRanges_1.8.8

[5] tools_2.12.1
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