
Making and Utilizing TranscriptDb Objects

Marc Carlson Patrick Aboyoun Hervé Pagès
Seth Falcon Martin Morgan

December 6, 2010

1 Introduction

The GenomicFeatures package retrieves and manages transcript-related fea-
tures from the UCSC Genome Bioinformatics1 and BioMart2 data resources.
The package is useful for ChIP-chip, ChIP-seq, and RNA-seq analyses.

> library("GenomicFeatures")

2 Transcript Metadata

2.1 TranscriptDb Objects

The GenomicFeatures package uses TranscriptDb objects to store transcript
metadata. This class maps the 5’ and 3’ untranslated regions (UTRs), pro-
tein coding sequences (CDSs) and exons for a set of mRNA transcripts to
their associated genome. TranscriptDb objects also have accessors functions
to allow such features to be retrieved individually or grouped together in a
way that reflects the underlying biology.

All TranscriptDb objects are backed by a SQLite database that manages
genomic locations and the relationships between pre-processed mRNA tran-
scripts, exons, protein coding sequences, and their related gene identifiers.

2.2 Creating New TranscriptDb Objects

The GenomicFeatures package provides functions to create TranscriptDb
objects based on data downloaded from UCSC Genome Bioinformatics or
BioMart. The following subsections demonstrate the use of these functions.

1http://genome.ucsc.edu/
2http://www.biomart.org/

1

There is also support for creating TranscriptDb objects from custom data
sources using makeTranscriptDb; see the help page for this function for
details.

2.2.1 Using makeTranscriptDbFromUCSC

The function makeTranscriptDbFromUCSC downloads UCSC Genome Bioin-
formatics transcript tables (e.g. "knownGene", "refGene", "ensGene") for
a genome build (e.g. "mm9", "hg19"). Use the supportedUCSCtables utility
function to get the list of supported tables.

> supportedUCSCtables()[1:4,]

track subtrack
knownGene UCSC Genes <NA>
knownGeneOld3 Old UCSC Genes <NA>
wgEncodeGencodeManualV3 Gencode Genes Genecode Manual
wgEncodeGencodeAutoV3 Gencode Genes Genecode Auto

> mm9KG <- makeTranscriptDbFromUCSC(genome = "mm9", tablename = "knownGene")

The function makeTranscriptDbFromUCSC also takes an important ar-
gument called circ_seqs to label which chromosomes are circular. The
argument is a character vector of strings that correspond to the circular
chromosomes (as labeled by the source). To discover what the source calls
their chromosomes, use the getChromInfoFromUCSC function to list them.
By default, there is a supplied character vector that will attempt to label
all the mitochondrial chromosomes as circular by matching to them. This is
the DEFAULT_CIRC_SEQS vector. It contains strings that usually correspond
to mitochondrial chromosomes. Once the database has been generated with
the circular chromosomes tagged in this way, all subsequent analysis of these
chromosomes will be able to consider their circularity for analysis. So it is
important for the user to make sure that they pass in the correct strings to
the circ_seqs argument to ensure that the correct sequences are tagged as
circular by the database.

> head(getChromInfoFromUCSC("hg19"))

chrom length
1 chr1 249250621
2 chr2 243199373

2

3 chr3 198022430
4 chr4 191154276
5 chr5 180915260
6 chr6 171115067

2.2.2 Using makeTranscriptDbFromBiomart

Retrieve data from BioMart by specifying the mart and the data set to
the makeTranscriptDbFromBiomart function (not all BioMart data sets are
currently supported):

> mmusculusEnsembl <-

+ makeTranscriptDbFromBiomart(biomart = "ensembl",

+ dataset = "mmusculus_gene_ensembl")

As with the makeTranscriptDbFromUCSC function, the makeTranscript-
DbFromBiomart function also has a circ_seqs argument that will default
to using the contents of the DEFAULT_CIRC_SEQS vector. And just like those
UCSC sources, there is also a helper function called getChromInfoFrom-
Biomart that can show what the different chromosomes are called for a
given source.

Using the makeTranscriptDbFromBiomart makeTranscriptDbFromUCSC
functions can take a while and may also require some bandwidth as these
methods have to download and then assemble a database from their respec-
tive sources. It is not expected that most users will want to do this step
every time. Instead, we suggest that you save your annotation objects and
label them with an appropriate time stamp so as to facilitate reproducible
research.

2.3 Saving and Loading a TranscriptDb Object

Once a TranscriptDb object has been created, it can be saved to avoid
the time and bandwidth costs of recreating it and to make it possible to
reproduce results with identical genomic feature data at a later date. Since
TranscriptDb objects are backed by a SQLite database, the save format is
a SQLite database file (which could be accessed from programs other than
Rif desired). Note that it is not possible to serialize a TranscriptDb object
using R’s save function.

> saveFeatures(mm9KG, file="fileName.sqlite")

A TranscriptDb object can be initialized from a file using loadFeatures.

3

> mm9KG <- loadFeatures("fileName.sqlite")

3 Retrieving Transcript, Exon, and Coding Se-
quence Ranges

3.1 Loading some sample genomic feature data

Here was are loading a previously created TranscriptDb object based on
UCSC known gene data. This database only contains a small subset of the
possible annotations for human and is only included to demonstrate and test
the functionality of the GenomicFeatures package.

> samplefile <- system.file("extdata", "UCSC_knownGene_sample.sqlite",

+ package="GenomicFeatures")

> txdb <- loadFeatures(samplefile)

> txdb

TranscriptDb object:
| Db type: TranscriptDb
| Data source: UCSC
| Genome: hg18
| UCSC Table: knownGene
| Type of Gene ID: Entrez Gene ID
| Full dataset: no
| transcript_nrow: 135
| exon_nrow: 544
| cds_nrow: 324
| Db created by: GenomicFeatures package from Bioconductor
| Creation time: 2010-09-21 16:27:22 -0700 (Tue, 21 Sep 2010)
| GenomicFeatures version at creation time: 1.1.12
| RSQLite version at creation time: 0.9-2
| DBSCHEMAVERSION: 1.0

3.2 Working with Basic Features

The most basic operations on a TranscriptDb object retrieve the genomic
coordinates or ranges for exons, transcripts or coding sequences. The func-
tions transcripts, exons, and cds return the coordinate information as a
GRanges object.

For example, all transcripts present in a TranscriptDb object can be
obtained as follows:

4

> GR <- transcripts(txdb)

> GR[1:3]

GRanges with 3 ranges and 2 elementMetadata values
seqnames ranges strand | tx_id tx_name

<Rle> <IRanges> <Rle> | <integer> <character>
[1] chr1 [1116, 4121] + | 1 uc001aaa.2
[2] chr1 [1116, 4272] + | 2 uc009vip.1
[3] chr1 [4269, 6628] - | 3 uc009vis.1

seqlengths
chr1 chr1_random chr10 ... chrX_random chrY

247249719 1663265 135374737 ... 1719168 57772954

The transcripts function returns a GRanges class object. You can
learn a lot more about the manipulation of these objects by reading the
GenomicRanges introductory vignette. The show method for a GRanges
object will display the ranges, seqnames (a chromosome or a contig), and
strand on the left side and then present related metadata on the right side.
At the bottom, the seqlengths display all the possible seqnames along with
the length of each sequence.

In addition, the transcripts function can also be used to retrieve a sub-
set of the transcripts available such as those on the +-strand of chromosome
1.

> GR <- transcripts(txdb, vals <- list(tx_chrom = "chr1", tx_strand = "+"))

> length(GR)

[1] 2

> unique(strand(GR))

[1] +
Levels: + - *

The exons and cds functions can also be used in a similar fashion to
retrive genomic coordinates for exons and coding sequences.

3.3 Working with Grouped Features

Often one is interested in how particular genomic features relate to each
other, and not just their location. For example, it might be of interest to

5

group transcripts by gene or to group exons by transcript. Such groupings
are supported by the transcriptsBy, exonsBy, and cdsBy functions.

The following call can be used to group transcripts by genes:

> GRList <- transcriptsBy(txdb, by = "gene")

> length(GRList)

[1] 51

> names(GRList)[10:13]

[1] "23192" "245938" "255403" "26751"

> GRList[11:12]

GRangesList of length 2
$245938
GRanges with 1 range and 2 elementMetadata values

seqnames ranges strand | tx_id tx_name
<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr20 [16351, 25296] + | 67 uc002wcw.1

$255403
GRanges with 1 range and 2 elementMetadata values

seqnames ranges strand | tx_id tx_name
<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr4 [43227, 146490] + | 10 uc003fzt.2

seqlengths
chr1 chr1_random chr10 ... chrX_random chrY

247249719 1663265 135374737 ... 1719168 57772954

The transcriptsBy function returns a GRangesList class object. As
with GRanges objects, you can learn more about these objects by reading the
GenomicRanges introductory vignette. The show method for a GRangesList
object will display as a list of GRanges objects. And, at the bottom the
seqlengths will be displayed once for the entire list.

For each of these three functions, there is a limited set of options that can
be passed into the by argument to allow grouping. For the transcriptsBy

6

function, you can group by gene, exon or cds, whereas for the exonsBy and
cdsBy functions can only be grouped by transcript (tx) or gene.

So as a further example, to extract all the exons for each transcript you
can call:

> GRList <- exonsBy(txdb, by = "tx")

> length(GRList)

[1] 135

> names(GRList)[10:13]

[1] "10" "11" "12" "13"

> GRList[[12]]

GRanges with 4 ranges and 3 elementMetadata values
seqnames ranges strand | exon_id exon_name exon_rank

<Rle> <IRanges> <Rle> | <integer> <character> <integer>
[1] chr4 [43227, 43385] + | 50 NA 1
[2] chr4 [49323, 49449] + | 51 NA 2
[3] chr4 [49951, 50046] + | 52 NA 3
[4] chr4 [57732, 58380] + | 56 NA 4

seqlengths
chr1 chr1_random chr10 ... chrX_random chrY

247249719 1663265 135374737 ... 1719168 57772954

As you can see, the GRangesList objects returned from each function
contain locations and identifiers grouped into a list like object according to
the type of feature specified in the by argument. The object returned can
then be used by functions like findOverlaps to contextualize alignments
from high-throughput sequencing.

The identifiers used to label the GRanges objects depend upon the data
source used to create the TranscriptDb object. So the list identifiers will not
always be Entrez Gene IDs, as they were in the first example. Furthermore,
some data sources do not provide a unique identifier for all features. In this
situation, the group label will be a synthetic ID created by GenomicFeatures
to keep the relations between features consistent in the database this was
the case in the 2nd example. Even though the results will sometimes have to
come back to you as synthetic IDs, you can still always retrieve the original
IDs. In the following example, we will find the original transcript names
stored in the database for each ID by calling the transcripts function.

7

> tx_ids <- names(GRList)

> vals <- list(tx_id=tx_ids)

> txs <- transcripts(txdb, vals, columns = c("tx_id", "tx_name"))

> head(values(txs))

DataFrame with 6 rows and 2 columns
tx_id tx_name

<integer> <character>
1 1 uc001aaa.2
2 2 uc009vip.1
3 3 uc009vis.1
4 39 uc001ifj.1
5 37 uc001ifi.1
6 38 uc009xhe.1

Finally, the order of the results in a GRangesList object can vary with
the way in which things were grouped. In most cases the grouped elements of
the GRangesList object will be listed in the order that they occurred along
the chromosome. However, when exons or CDS are grouped by transcript,
they will instead be grouped according to their position along the transcript
itself. This is important because alternative splicing can mean that the order
along the transcript can be different from that along the chromosome.

3.4 Prespecfied grouping functions

The intronsByTranscript, fiveUTRsByTranscript and threeUTRsByTran-
script are convenience functions that provide behavior equivalent to the
grouping functions, but in prespecified form. These functions return a
GRangesList object grouped by transcript for introns, 5’ UTR’s, and 3’
UTR’s, respectively.

> length(intronsByTranscript(txdb))

[1] 135

> length(fiveUTRsByTranscript(txdb))

[1] 61

> length(threeUTRsByTranscript(txdb))

[1] 58

8

3.5 Convenience functions for computing overlap

The transcriptsByOverlaps, exonsByOverlaps and cdsByOverlaps func-
tions return a GRangesList object containing data about transcripts, exons,
or coding sequences that overlap genomic coordinates specified by a GRanges
object. So for example, lets just mock up some fake data:

> gr <- GRanges(

+ seqnames = rep("chr5",4),

+ ranges = IRanges(start = c(244620, 244670, 245804, 247502),

+ end = c(244652, 244702, 245836, 247534)),

+ strand = rep("+", 4))

Then we can call the convenience function to see what transcripts overlap
with our ranges.

> transcriptsByOverlaps(txdb, gr)

GRanges with 1 range and 2 elementMetadata values
seqnames ranges strand | tx_id tx_name

<Rle> <IRanges> <Rle> | <integer> <character>
[1] chr5 [244626, 248468] + | 14 uc003jal.1

seqlengths
chr1 chr1_random chr10 ... chrX_random chrY

247249719 1663265 135374737 ... 1719168 57772954

The convenience functions can be a great shortcut, but because they have
to make assumptions about how the results are compared and represented,
they are ultimately not as flexible as just using the basic and grouping
accessors in combination with findOverlaps.

4 A typical example treating gr as RNA-seq data

Let’s suppose that you have run an experiment. After mapping all your
reads to a genome and collapsing them into a set of ranges, you want to find
out which genomic features a particular range overlaps with. What would
be the usual way to proceed?

For this example, let’s also assume that you are only interested in map-
ping the ranges that overlap with exons (not introns). From our Tran-
scriptDb object, we want to recover the annotations for all of the relevant

9

exons, but grouped according to their transcripts. Therefore, we want to
use exonsby and group them by transcripts.

> annotGr <- exonsBy(txdb, "tx")

Then we need to use the findOverlaps method to learn which of our
data ranges, gr, will overlap with the in exons that we have grouped by
transcripts.

> OL <- findOverlaps(query = annotGr, subject = gr)

Finally, once we have called findOverlaps we can subset out the an-
notations that meet our criteria. The queryHits method will allow us to
retrieve only the parts of the query that overlapped from our original find-
Overlaps call. Once we have subsetted out annotations in this way, the
length of the resulting GRangesList object is also the number of transcripts
that overlap with our data.

> tdata <- annotGr[unique(queryHits(OL)),]

> tdata

GRangesList of length 1
$14
GRanges with 2 ranges and 3 elementMetadata values

seqnames ranges strand | exon_id exon_name exon_rank
<Rle> <IRanges> <Rle> | <integer> <character> <integer>

[1] chr5 [244626, 245552] + | 75 NA 1
[2] chr5 [247823, 248468] + | 76 NA 2

seqlengths
chr1 chr1_random chr10 ... chrX_random chrY

247249719 1663265 135374737 ... 1719168 57772954

> length(tdata)

[1] 1

By using findOverlaps along with the different accessors in this way,
it is possible to connect any data that has been represented as a GRanges
object with the annotations stored in a TranscriptDb object. Calling find-
Overlaps along with the appropriate GRanges object not only allows users

10

to quickly determine what has overlapped, but also controls what criteria
are used for determining whether an overlap has occurred. This can be done
by passing in an alternate type parameter to findOverlaps. In addition,
because the basic accessors allow for the users to retrieve data grouped in
different ways, the user has control over which parts of a transcript or gene
are included in the overlap. For a more complete example of how you could
approach RNA-seq analysis, including explanation on methods that will help
to tally up the counts etc. please see the GenomicRanges Use Cases vignette.

5 Session Information

R version 2.12.0 Patched (2010-11-28 r53696)
Platform: x86_64-unknown-linux-gnu (64-bit)

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[5] LC_MONETARY=C LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] GenomicFeatures_1.2.3 GenomicRanges_1.2.1 IRanges_1.8.5

loaded via a namespace (and not attached):
[1] BSgenome_1.18.2 Biobase_2.10.0 Biostrings_2.18.2 DBI_0.2-5
[5] RCurl_1.5-0 RSQLite_0.9-4 XML_3.2-0 biomaRt_2.6.0
[9] rtracklayer_1.10.5 tools_2.12.0

11

