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5 A complete Example

1 Overview

To summarize, we can split major functions into 5 categories.

Reading and writing sequences

GeneR has been designed for fast sequence retrieving even from very large sequence databanks, in
Fasta, Embl or Genbank formats. It is also possible to enter sequences directly from a R command
line.



Handling sequences

The usual copy-paste of parts of sequences or other manipulations can be performed by functions
using vectors of strands and positions. Annotations from the features field within formatted
sequence entries can be extracted and used directly in vectors. By this way, it is easy to extract
sequence fragments of interest.

Analyzing sequences
Some tools are designed to count oligo-nucleotides, to look for exact word positions or to shuffle
sequences (useful for statistical validations).

Manipulation of regions on a chromosome

In all the amount of annotations, we often have mass informations on genes (introns, CDS, iso-
forms) but we have to deduce intergenic regions, exons or more sophisticated regions. We provide
a complete set of tools to easily compute any subregions, without an exhaustive texture on a whole
chromosome.

Genetic tools

Finally, the package also contains functions related to genetic and structural aspects of the se-
quences : ORF localization, translation, or RNA secondary structure determination (with exten-
tion of GeneR: GeneRfold package).

2 Installation
With package sources, you can try also something like:
R CMD INSTALL GeneR_x.x-x.tar.gz

or try in the menu (for Windows and mac users).

3 Quick Start

First steps on GeneR could be to check man page of GeneR:

library(GeneR)
help(GeneR)

And for impatient:

demo (GeneR)

4 Usage

4.1 Basique manipulation with sequences as character string

Standard R commands allow to extract subpart of a character string, or append two character
string, put in upper case (functions substr, paste, toupper). We add tools for the specific use of
genetic sequences: insert a sequence into a first one, compute the reverse complementary, count
mono, di or tri-nucleotides of sequence and the possibility to import sequence from a Embl, Fasta
or GeneBank file.



Example
Insert a poly A into sequence

> library(GeneR)

> s <- '"gtcatgcatgctaggtgacagttaaaatgcgtctaggtgacagtctaacaa"
> s2 <- insertSeq(s, "aaaaaaaaaaaaaa", 20)

> s2

Compute the reverse complementary:

> library(GeneR)
> strComp(s)

Count mono nucleotides, di-nucleotides (wsize can be from 1 to 15 if computer has enough mem-
ory).

> strCompoSeq(s2, wsize = 1)
> strCompoSeq(s2, wsize = 2)

Get some data from the web

> seqgNcbi("BY608190", file = "toto.fa")
> strReadFasta("toto.fa", from = 10, to = 35)

4.2 Manipulation of sequences with buffers
4.2.1 Introduction

To work on large sequences (i.e. a whole chromosome), we use a C++ adapted class that requiers
a minimum memory allocation.

Standard use: a chromosome load in the buffer, all computation done with GeneR functions,
and only usefull results returns to standard R objects.

4.2.2 Basic manipulation

Sequence read from a fasta file:

> readFasta("toto.fa")
> readFasta("toto.fa", seqno = 1)

Show current buffer
> getSeq(from = 10, to = 35)
Sames previous functions with buffers: Extract from multiple positions

> getSeq(seqno = 0, from = c(1, 10, 360), to = c(10, 20, 0))

> assemble(seqno = 0, destSeqno = 1, from = c(1, 10, 360), to = c(10,
+ 20, 0))

> getSeq(seqno = 1)

See the end of sequence

> sizeSeq(seqno = 0)
> size0 <- sizeSeq(seqno = 0)
> getSeq(seqno = 0, from = size0 - 20, to = 0)

Append and concat:



4.2.3 Look for motifs, composition, masked position

Several tools are designed to

e gets match positions of an oligomer in fragments of a sequence

e gets ORFs (Open Reading Frames) from a sequence.

> getSeq(0, from = 1, to = 35)

> getSeq(1)

> appendSeq(0, 1)

> getSeq(seqno = 0, from = size0 - 20, to = size0 + 10)

> concat(seqnol = 0, seqno2 = 1, destSeqno = 3, froml = 2, tol
+ from2 = 8, to2 = 0, strandl = 1)

> getSeq(3)

10,

e Get composition in mono, di or trinucleotides of fragments of a sequence

e mask sequence in lower case or with letter "N’
e get masked position from a sequence.
e change sequence to Dna or Rna.

Look for motifs

> exactWord("AAAG", seqno = 0)

Find Orfs

> getOrfs(seqno = 0)
> maxOrf (seqno = 0)

Mask sequences while lowering case of parts of sequence

> x = c(5, 15, 30)
>y = (10, 20, 35)
> lowerSeq(from = x, to = y)
> getSeq(from = 1, to = 35)

And the reverse: get masked positions from a sequence:

"lower")
”upper ”)

> posMaskedSeq(seqno = 0, type
> posMaskedSeq(seqno = 0, type

Or masked with N:

> s <- "ATGCtgTGTTagtacATNNNNNNNNNNNNNNNTGGGTTTaAAAattt"
> placeString(s, upper = FALSE, seqno = 0)
> posMaskedSeq(seqno = 0, type = "N")

Change from Dna to Rna alphabet

> dnaToRna()
> getSeq()



1 11 25 40 Absolute (A)
11 25 40 Real (R)
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Figure 1: Adresses of a sequence

4.2.4 Adresses manipulations

Presentation When GeneR load a subset of a larger sequence stored in a bank file, it will store
the following informations in the C adapted class (buffers, by default 100 buffers than can be
extended if necessary):

e subsequence (i.e. the succession of A, T,G,C).

e postions of the extremities of the subsequence in the master sequence
e size of the whole sequence in the bank file

e name of the sequence

For specific purposes as renaming a sequence, all these variables can be viewed and carefully
changed at any time (here functions getAccn and setAccen).

Several sequences can be stored simultaneously and called by their buffer number.

Strand is another global variable which can be set and viewed (functions getStrand and set-
Strand). Tt is used as input parameter in many functions to analyze complementary strand. It
was designed to avoid doing explicitly the complement of the loaded strand then to store it in a
buffer with, as consequence, loss of the informations linked to the master sequence.

We have defined 3 types of addresses on a subsequence extracted from a master sequence:

e Absolute addresses i.e. addresses on the master sequence, from the 5’ end of the input strand
refered as forward (noted A)

e Real addresses, i.e. addresses on the master sequence, from the 5 end of one of strands
(noted R)

e Relative addresses, i.e. addresses on working subsequence, from the 5’ end of one of strands
(noted T).

Let’s show an example, if we read sequence from 11 to 25 from a gene of size 40 (see Figurel).

Obviously, when an entire sequence is stored, real and relative addresses will be the same.

Although all functions using positions need and return absolute addresses, 6 functions allow
to convert R, A, T into any other type (functions RtoA, RtoT, AtoR, AtoT, TtoR, TtoA).

A global variable strand is used to convert positions (see setStrand getStrand).

We keep globals variables of sequences... We implement tools to ...

Example Imagine our chromosome is as follow, and we study only part of chromosome between
position 11 to 25:



> 5 <= "xxxxxxxXxXATGTGTCGTTAATTGXXXXXXXXXXXXXXX"
> placeString(s)

> setStrand(0)

> writeFasta(file = "toto.fa")

> readFasta(file = "toto.fa'", from = 11, to = 25)
> getSeq()

Orfs on ’Absolute’ and ’relative’ Adresses

> getOrfs()
> AtoT(getOrfs())

More Fun:

> getSeq()

> exactWord(word = "AA")

> AtoT(exactWord(word = "AA")[[1]1])
> setStrand (1)

> getSeq()

> exactWord(word = "AA")

> AtoT(exactWord (word = "AA")[[1]])
> exactWord(word = "TT")

> AtoT(exactWord(word = "TT")[[1]1])

4.3 Bank files
4.3.1 Retrieve sequences

We develop 2 functions to get sequence files from internet: seqUrl (from a srs server) and seqNcbi
(from Ncbi).
Sequence are retrieve in Fasta or Embl format for seqUrl; Fasta or GenBank format for seqNcib.

> seqNcbi("BY608190", file = "bank.fa")
> seqNcbi ("BY608190", file "BY608190.gbk", type = "genbank")

4.3.2 Fasta files

Basic tools to get or write informations from bank file

readFasta(file = "bank.fa", name = "gi[26943372|gb|BY608190.1|BY608190",
from = 1, to = 30)
getSeq()
fastaDescription(file = "bank.fa", name = "gi|26943372|gb|BY608190.1|BY608190")

vV VvV + V

And to write a to the fasta bank file:

> s = "cgtagctagctagctagctagctagctagcta'

> placeString(s, seqno = 0)

> writeFasta(seqno = 0, file = "bank.fa", name = "MySequence",
+ comment = "A sequence Generated by R", append = TRUE)

> cat(paste(readLines("bank.fa"), collapse = "\n"))

4.3.3 Embl files

We made basic tools to get sequence and write Embl files.



4.3.4 GenBank files

We have a function to open any sequence from a GeneBank files

> readGbk(file = "BY608190.gbk", name =

+ to = 30)
> getSeq()

4.4 Segments manipulations

4.4.1 Overview

"BY608190", from

"This is a comment for \n
"CDS",

" text = "/codon_start=2",
" text = "/gene=\"toto\"",

"/note=\"Here is \n

", text

= getOrfs()[1,

", text = paste("/translation=\"",

> s <- "gtcatgcatcctaggtgtcagggaaaatgcgtctacgtgacagtctaacaa"
> placeString(s)

> writeEmblComment (file = "toto.embl", code = "CC", text
+ append = FALSE)

> writeEmblLine(file = "toto.embl", code = "FT", header

+ text = "<1..12", nextfield = FALSE)

> writeEmblLine(file = "toto.embl", code = "FT", header

+ nextfield = FALSE)

> writeEmblLine(file = "toto.embl", code = "FT", header

+ nextfield = FALSE)

> writeEmblLine(file = "toto.embl", code = "FT", header

+ nextfield = TRUE)

> prot <- translate(sequno = 0, from = getOrfs()[1, 1], to
+ 2])

> writeEmblLine(file = "toto.embl", code = "FT", header =
+ prot, "\"", sep = ""), nextfield = FALSE)

> writeEmblSeq(file = "toto.embl")

> cat(paste(readLines("toto.embl"), collapse = "\n"))

10,

We made a set of tools manipulation segments. The aim of these classes is to describe regions on
chromosomes that are discontinuous segments on a line like:

1 10
Region A: HEH
Region B: HHHE W
Region C:

We made two kind of class

25

HEHHHHH

40

HUHSHH B HAHS

#HHHHE  HHHH

e segSet: segments set, is a matrix nx2 composed of a column of "from”, and a column of "to”.
Used to describe a region like "A’ or 'B’ in our example. (A matrix 3x2 to describe region

B,

e globalSeg: a list of segSet. It allows the notion of list of discontinuous segments (our use:
a list of gene’s models as a gene’s model is stored as a list of its exons). In our sample,
globalSeg will be the list of the 3 regions A,B and C. Note that it store more information
than just a matrix with 2 columns containing all segments of theses 3 regions.

For a better comprehension of other man pages, we introduce this notation:

e a segment is just a part of a line determined by two values (from and to)

e an object of class segSet is a set of n segments, determined by a matrix nx2

e an object of class globalSeg is a set of segSets, determined by a list of matrix.

this dun

what



a = matrix(c(1, 5, 15, 45, 17, 38, 100, 120, 130, 140, 135, 145,
142, 160), ncol = 2, byrow = TRUE)
b = matrix(c(15, 18, 28, 45, 1, 10, 15, 20, 25, 40, 17, 23, 35,
38, 100, 105, 110, 120), ncol = 2, byrow = TRUE)
a <- as.segSet(a)
b <- as.segSet(b)
A = list(matrix(c(1, 15, 17, 5, 45, 38), ncol = 2), matrix(c(100,
120), ncol = 2), matrix(c(130, 135, 140, 145), ncol = 2),
matrix(c(142, 160), ncol = 2))
list(matrix(c(15, 28, 18, 45), ncol = 2), matrix(c(1, 15,
25, 10, 20, 40), ncol = 2), matrix(c(17, 35, 23, 38), ncol = 2),
matrix(c(100, 110, 105, 120), ncol = 2))
= as.globalSeg(A)
= as.globalSeg(B)
= or(a, b)
= and(a, b)
= not(a, b)
= Xor(a, b)
par (mfrow = c(4, 1))
> plot(a, xlim = c(1, 160), main = "a (segSet)")
> plot(b, xlim = c(1, 160), main = "b (segSet)")
> plot(A, xlim = c(1, 160), main = "A (globalSet)")
> plot(B, xlim = c(1, 160), main = "B (globalSet)")
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Figure 2: Representation of the two class of elements.
Figure 3: Union, intersection, substraction on segments set.

4.4.2 Examples

We show segments usage with figure:
e Figure 2 presents our objects
e Figure 3 show union, intersection, and basic manipulation on object of class segSet.
e Figure 4 show union, intersection, and basic manipulation on object of class globalSey.

e Figure 4.4.2 show unary operators on our objects.

4.5 Random sequences
4.5.1 Presentation

We made two tools to generate a random sequence, or to randomize an existing sequence.

Function randomSeq creates a random sequence from a distribution of nulcleotides, of ploy-
nucleotides. A real composition of nucleotides can be use from function compoSeq, with param
p=TRUE.

Figure 4: Union, intersection, substraction on global segments.



Figure 5: Unary operator.

Function shufleSeq generate a sequence while assembling at random specific number of each
nucleotides (or ploy-nucleotides). These number of nucleotide can be provided by function com-
poSeq, with param p=FALSE: it is then a re-assemblage of all nucleotides (or tri-nucleotides, or
ploy-nucleotides) of a real sequence.

4.5.2 Example

> set.seed(3)

> randomSeq(prob = ¢(0.2, 0.3, 0.2, 0.3), letters = c("T", "C",

+ "A", "G"), n = 30)

> randomSeq(prob = rep(0.0625, 16), letters = c("TT", "IC", "TA",
. "TG", "CT", "CC", "CA", "CG", "AT", "AC", "AA", "AG", "GT",
+ "Ge", "GA", "GG"), n = 10)

> shuffleSeq(count = c(7, 3, 3, 4, 0), letters = c("T", "C", "A",
+ "G", "N"))

> shuffleSeq(count = c(rep(4, 4), rep(2, 4), rep(1, 4), rep(0,

+  4)), letters = c("TT", "IC", "TA", "TIG", "CT", "CC", "CA",
+ "CGg", "AT", "AC", "AA", "AG", "GT", "GC", "GA", "GG"))

> seqNcbi("BY608190", file = "BY608190.fa")

> readFasta("BY608190.fa")

> randomSeq (compoSeq(wsize = 3, p = TRUE), n = 10)

> shuffleSeq(compoSeq(wsize = 3, from = 1, to = 30, p = FALSE))

4.6 Profiles
4.6.1 Overview

Computes profile(s) of user defined quantities around sites of interest in sequence fragments.
Profile(s) is(are) constituted of bins of equal size around the sites of interest named origins. It
produces for each bin, and for each quantity the mean, the standard deviation and the number of
valid events.

4.6.2 Examples

> s <= nn

> for (i in 1:20) s <- paste(s, randomSeq(n = 100), randomSeq(prob = c(0.3,
+ 1, 1, 1, 0)/3.3, n = 100), sep = "")

> placeString(s, seqno = 0)

> dens <- densityProfile(ori = 200 * (1:20) - 100, from = 200 *

+ (0:19) + 1, to = 200 * (1:20), seqno = 0, fun = seqSkew,

+ nbinL = 10, nbinR = 10, sizeBin = 10)

> plot(dens$skta, main = "TA skew")

> s <= ""

> for (i in 1:20) s <- paste(s, randomSeq(n = 100), randomSeq(prob = c(0.3,
+ 1, 1, 1, 0.2)/3.5, n = 100), sep = "")

> placeString(s, seqno = 1)

> dens2 <- densityProfile(ori = 200 * (1:20) - 100, from = 200 *

+ (0:19) + 1, to = 200 * (1:20), seqno = 1, fun = compoSeq,

+ nbinl = 10, nbinR = 10, sizeBin = 10)

> plot(dens2$T, main = "#T")

> dens3 <- densityProfile(ori = 200 * (1:20) - 100, from = 200 *

+ (0:19) + 1, to = 200 * (1:20), seqno = 1, fun = compoSeq,



+ nbinl. = 10, nbinR = 10, sizeBin = 10, threshold = 4)
> plot(dens3$T, main = "#T")

5 A complete Example

In this section, we will gets intronic, 3’ UTR and intergenic compositions on a whole chromosome
(Human: chromosome 3). Data will be retrieve from Ucsc Mysql server, (it requiers to install
RMySql package).

First download a fasta file of chromosome 3:

download.file('http://hgdownload.cse.ucsc.edu/goldenPath/hgl7/chromosomes/chr3.fa.gz"',
destfile='chr3.fa.gz')

Gets all information on this gene from Ucsc Mysql database:

library(RMySQL)
con <- dbConnect("MySQL", host="genome-mysql.cse.ucsc.edu",
user="genome", dbname="hgl7")

rs <- dbSendQuery(con, statement = paste(
"SELECT * ",
"FROM knownGene",
"WHERE chrom = 'chr3'",
"AND strand = '+'"
))

ucscSQLdataKnownGene <- fetch(rs, n = -1)

rs <- dbSendQuery(con, statement = paste(
"SELECT * ",
"FROM chr3_mrna"

))
ucscSQLdataMRNA <- fetch(rs, n = -1)

Now we transfrom matrix of data (n row: one by gene) to intervals (a list of n elements, one
by gene).

We will transform something like
ucscSQLdataMRNA[1:3,]

to a list adapted to our computations:

Genes3plus <- apply(ucscSQLdataKnownGene,1,function(u){

matrix( c(as.integer(strsplit(as.character(ul9]),",") [[1]1]),
as.integer(strsplit(as.character(u[10]),",") [[1]11)),
ncol=2)

b

Genes3plus <- as.globalSeg(Genes3plus)

getsOneExon <- function(u)
{
start<- as.integer(strsplit(as.character(u[22]),",") [[1]1])
stop <- as.integer(strsplit(as.character(u[20]),",")[[1]]) + start
if (length(start) >0)
return(matrix(c(start,stop),ncol=2))
else
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return(NULL)
}

Al1Mrna3 <- apply(ucscSQLdataMRNA,1,getsOneExon)
Al1Mrna3 <- as.golbalSeg(AllMrna3)
rm(ucscSQLdataKnownGene ,ucscSQLdataMRNA,rs)

Al1Mrna3[1:4]

Here we gets Genes3plus: an object with all known human genes on strand forward and on
chromosome 3, and A11Mrna3: an object with all possible human genes on chromosome 3.
No we easily deduce all known introns (on strand forward), and all possible genic regions:

Genes3ranges <- range(Genes3plus)
possibleExons <- or(Al1Mrna3)
rangeDNA <- matrix(range.globalSeg(possibleExons,global=TRUE) ,ncol=2)

notExon <- xorRecouvr(as.matrix(possibleExons) ,rangeDNA)
knownIntrons <- xorRecouvr(as.matrix(Genes3plus),as.matrix(Genes3ranges))

## Safe Introns
safeIntrons <- and(knownIntrons,notExon)

rangeMRNA <- range.intervals(possibleExons)
safeIntergenic <- xorRecouvr(as.matrix(possibleExons),as.matrix(rangeMRNA))

Now compute. . .

readFasta("chr3.fa")
safelntrons <- as.matrix(safelIntrons)
safeIntergenic <- as.matrix (safelntergenic)

composIntrons <-compoSeq(from=safelntrons[,1],to=safeIntrons[,2])
composIntergenic <-compoSeq(from=safelntergenic[,1],to=safeIntergenic[,2])

composIntrons
composIntergenic
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