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Figure 1: A schematic illustrating various nonexclusive mechanisms by which DNA
variants can affect transcript abundance (Williams et al., 2007).

1 eQTL concepts and discovery tools

The basic concern in the lab is the relationship between structural variation in DNA and
variation in mRNA abundance. DNA variants of interest are primarily SNP as identified
through

• direct genotyping in the Sanger sequencing paradigm (yielding HapMap phase II
genotypes, for example)

• array-based genotyping (yielding HapMap phase III)

• NGS-based variant calling (as provided for 1000 genomes (1KG))

• hybrids of array-based and imputed genotypes (imputation to the 1KG panel)

mRNA variation is typically characterized using gene expression microarrays, but RNA-
seq can also be considered.

A helpful schematic indicating possible impacts of structural variation on gene tran-
scription is given in Williams et al. (2007); see Figure 1.
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To elucidate impacts of DNA variations on regulation of gene transcription we need
to be able to

• represent mRNA abundance and SNP genotypes (both observed and imputed) in
a coordinated way for many samples

• perform suitably focused and calibrated tests of association between mRNA levels
and genotype (e.g., allele count for a SNP)

• provide significance assessments and functional contexts for observed associations.

On the basis of excellent algorithms and software in the snpMatrix package of Clayton
and Leung (Clayton and Leung, 2007)), the GGtools package provides tools to address
all of these concerns.

1.1 Checking for informative variants for a specified gene

The following is a simple illustration of a focused workflow.

> library(GGtools)

> if (!exists("hmceuB36.2021")) data(hmceuB36.2021)

> f1 = gwSnpTests(genesym("CPNE1") ~ male, hmceuB36.2021, chrnum(20))

> topSnps(f1)

p.val

rs17093026 6.485612e-14

rs1118233 1.897898e-13

rs2425078 2.426168e-13

rs1970357 2.426168e-13

rs12480408 2.426168e-13

rs6060535 2.426168e-13

rs11696527 2.426168e-13

rs6058303 2.426168e-13

rs6060578 2.426168e-13

rs7273815 2.544058e-13

These findings can be visualized in the context of the chromosome in a so-called
Manhattan plot; see Figure 2.

1.2 Components of the workflow; refinements

The primary workhorse thus far is gwSnpTests. We need to understand its interface and
its return values.

> showMethods("gwSnpTests")
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> plot(f1)
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Figure 2: Manhattan plot for chromosome 20 eQTL for CPNE1. The y axis measures
the significance of association of SNP allele copy number with expression for this gene.
The association is measured by a χ2(1) statistic transformed to a p-value, which is
logarithmically transformed and then multiplied by −10.
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Function: gwSnpTests (package GGtools)

sym="formula", sms="smlSet", cnum="chrnum", cs="missing"

(inherited from: sym="formula", sms="smlSet", cnum="cnumOrMissing", cs="missing")

sym="formula", sms="smlSet", cnum="cnumOrMissing", cs="missing"

sym="formula", sms="smlSet", cnum="snpdepth", cs="chunksize"

sym="formula", sms="smlSet", cnum="snpdepth", cs="missing"

> f1

cwSnpScreenResult [chr 20 ] for gene CPNE1 [probe GI_23397697-A ]

> class(f1)

[1] "cwSnpScreenResult"

attr(,"package")

[1] "GGBase"

> getClass(class(f1))

Class "cwSnpScreenResult" [package "GGBase"]

Slots:

Name: .Data chrnum gene psid annotation testType

Class: list chrnum character character character character

Name: call sessionInfo

Class: call SessionInfo

Extends:

Class "gwSnpScreenResult", directly

Class "list", by class "gwSnpScreenResult", distance 2

Class "vector", by class "gwSnpScreenResult", distance 3

Class "AssayData", by class "gwSnpScreenResult", distance 3

1.2.1 Data representation: smlSet

The smlSet container provides coordinated management of expression, genotype, phe-
notype, and other metadata in a fashion broadly consistent with the ExpressionSet

class. If X is an smlSet instance then

• exprs(X) and pData(X) have familiar roles of extracting a matrix of expression
values, and a data.frame of sample-level data

• X[,S] subsets the samples according to predicate S
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• X[probeId(P),] subsets the expression data to probes enumerated in predicate P

• X[chrnum(C),] subsets the genotype data to chromosome C

• annotation(X) returns the annotation package used for mapping expression probe
identifiers

Clearly there are two kinds of feature in use here: expression probes and SNPs. The
ambiguous handling of the X[G,] idiom has not posed a problem thus far. As the
structure gains wider use, more features may be added to simplify filtering through
bracket-based operations.

Operations targeted on the genotype data component include:

• smList(X) returns a list of snp.matrix objects, using a byte to encode each
genotype

• MAFfilter(X,...) will remove SNP that fail to meet a minor allele frequency
criterion

• GTFfilter(X,...) will remove SNP that fail to meet a minimum genotype fre-
quency criterion

The GGtools package provides hmceuB36.2021 as a modest-sized exemplar of the
smlSet structure, with HapMap phase II genotype data from chromosomes 20 and 21,
and GENEVAR expression data for 90 CEU individuals.

> hmceuB36.2021

snp.matrix-based genotype set:

number of samples: 90

number of chromosomes present: 2

annotation: illuminaHumanv1.db

Expression data dims: 47293 x 90

Phenodata: An object of class "AnnotatedDataFrame"

sampleNames: NA06985 NA06991 ... NA12892 (90 total)

varLabels: famid persid ... male (7 total)

varMetadata: labelDescription

> names(pData(hmceuB36.2021))

[1] "famid" "persid" "mothid" "fathid" "sampid" "isFounder"

[7] "male"

> table(hmceuB36.2021$isFounder)

6



FALSE TRUE

30 60

The expression data is managed exactly as in an ExpressionSet from Biobase. The
genotype data has a concise representation. It and its coercions are defined in the
snpMatrix package.

> s20 = smList(hmceuB36.2021)[["20"]]

> s20

A snp.matrix with 90 rows and 119921 columns

Row names: NA06985 ... NA12892

Col names: rs4814683 ... rs6090120

> as(s20, "matrix")[1:4,1:4] # show raw

rs4814683 rs6076506 rs6139074 rs1418258

NA06985 03 03 03 03

NA06991 02 03 02 02

NA06993 01 03 01 01

NA06994 01 03 01 01

> as(s20, "character")[1:4,1:4]

[,1] [,2] [,3] [,4]

[1,] "B/B" "B/B" "B/B" "B/B"

[2,] "A/B" "B/B" "A/B" "A/B"

[3,] "A/A" "B/B" "A/A" "A/A"

[4,] "A/A" "B/B" "A/A" "A/A"

> as(s20, "numeric")[1:4,1:4]

rs4814683 rs6076506 rs6139074 rs1418258

NA06985 2 2 2 2

NA06991 1 2 1 1

NA06993 0 2 0 0

NA06994 0 2 0 0

Question 1: Use plot_EvG to visualize the specific relationship between expression
and allele copy number for the best result for CPNE1 shown above.

Question 2: Create a new smlSet hmff limited to CEU founders and with genotypes
having minimum genotype frequency at least 5%.

Question 3: Test for eQTL for CPNE1 in the filtered structure, saving the result
in f1f for later conversions. Create relevant visualizations.
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1.2.2 Analysis: snp.rhs.tests; permutation testing

The snpMatrix package supplied various utilities for general analysis of genome-wide
association studies. gwSnpTests is just a wrapper for the snp.rhs.tests function. To
see it in action,

> SS = (SS <- snp.rhs.tests(exprs(hmceuB36.2021)["GI_23397697-A",

+ ] ~ male, data = pData(hmceuB36.2021), snp.data = s20, family = "gaussian"))

> class(SS)

[1] "snp.tests.glm"

attr(,"package")

[1] "snpMatrix"

> length(names(SS))

[1] 119921

> sum(is.na(p.value(SS)))

[1] 53695

> SS[1:4, ]

Chi.squared Df p.value

rs4814683 0.071165981 1 0.7896466

rs6076506 0.002905309 1 0.9570141

rs6139074 0.680486311 1 0.4094193

rs1418258 0.077548726 1 0.7806472

> SS["rs6060535", ]

Chi.squared Df p.value

rs6060535 53.62528 1 2.426168e-13

This shows that for a given phenotypic response, large numbers of GWAS tests can be
performed rapidly.

Question 4: Why do so many tests have p-value NA?
Which of our findings are significant in the context of so many tests? We can permute

the expression data, keeping the genotype data fixed. Here is one way to obtain a sample
from the permutation distribution of the smallest p-value for a specific gene.

> Mtests = sapply(1:100, function(x) topSnps(gwSnpTests(genesym("CPNE1") ~

+ male, sms = permEx(hmceuB36.2021), cnum = chrnum(20)))[[1]][1])
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1.2.3 Context: GenomicRanges and rtracklayer

A major response to the transition to high-throughput sequencing assays is the IRanges
infrastructure. The GenomicRanges package defines the GRanges class, to which we can
convert results of an eQTL search:

> gr1 = as(f1, "GRanges")

> gr1[1:4, ]

GRanges with 4 ranges and 4 elementMetadata values

seqnames ranges strand | type group score

<Rle> <IRanges> <Rle> | <character> <character> <numeric>

rs4814683 chr20 [ 9795, 9795] * | snpeff gws 0.10256722

rs6076506 chr20 [11231, 11231] * | snpeff gws 0.01908166

rs6139074 chr20 [11244, 11244] * | snpeff gws 0.38783167

rs1418258 chr20 [11799, 11799] * | snpeff gws 0.10754519

universe

<character>

rs4814683 hg18

rs6076506 hg18

rs6139074 hg18

rs1418258 hg18

seqlengths

chr20

NA

> gr2 = as(f1f, "GRanges")

Question 5: Export these GRanges instances as wig files and add to a UCSC
browser session as custom tracks. You could do this with rtracklayer if your searchlist
had a particular form. You should see something like Figure 3; R Track 1 is the search
on all SNP; R Track 2 follows the restriction to minimum genotype frequency 5%.
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Figure 3: Browser tracks associated with eQTL screens f1 and f1f.
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2 Comprehensive eQTL surveys: performance is-

sues

A comprehensive survey of eQTL would consider possible relationships between 20000
or so genes and 8 million or more SNP (the latter is the approximate size of the 1000
genomes SNP panel). Creating, storing, and interrogating the family of 160 billion results
is a significant undertaking. We now illustrate a strategy for conducting comprehensive
surveys.

2.1 A study of genes coresident on chromosome 20

We will select 50 genes at random from chromosome 20 and compute all tests for asso-
ciation with SNP on chromosome 20.

First we select the genes and filter the smlSet:

> set.seed(1234)

> library(illuminaHumanv1.db)

> g20 = get("20", revmap(illuminaHumanv1CHR))

> samp = sample(g20, size = 50, replace = FALSE)

> hlit = hmceuB36.2021[probeId(samp), ]

If you are using a POSIX-compliant system, you can speed up this process by dis-
tributing over cores. We will be writing data to a folder called dem50.

> try(system("rm -rf dem50"))

> if (try(require(multicore))) {

+ unix.time(e1 <- eqtlTests(hlit, ~male, geneApply = mclapply,

+ targdir = "dem50"))

+ }

If you do not have multicore, alter the code to:

> try(system("rm -rf dem50"))

> unix.time(e1 <- eqtlTests(hlit, ~male, geneApply = lapply, targdir = "dem50"))

user system elapsed

40.464 2.146 45.885

The resulting object is:

> e1

eqtlTools results manager, computed Fri Oct 15 00:19:53 2010

There are 2 chromosomes analyzed.

some genes: GI_26051259-I GI_42734342-S ... hmm26595-S GI_24041039-A

some snps: rs4814683 rs6076506 ... rs6062370 rs6090120
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> class(e1)

[1] "eqtlTestsManager"

attr(,"package")

[1] "GGtools"

> getClass(class(e1))

Class "eqtlTestsManager" [package "GGtools"]

Slots:

Name: fflist call sess exdate shortfac geneanno

Class: list call ANY ANY numeric character

Name: df summaryList

Class: numeric list

We are using the ff package to use disk to maintain extremely voluminous outputs.

> e1@fflist[[1]][1:4, 1:4]

GI_26051259-I GI_42734342-S GI_29570787-I GI_42662261-S

rs4814683 86 7 15 1

rs6076506 183 71 0 41

rs6139074 68 39 1 23

rs1418258 101 6 23 1

> e1@shortfac

[1] 100

The information shown above is not intended for public consumption. Instead we per-
form focused interrogation using brackets and casting:

> e1[rsid("rs4814683"), probeId("GI_26051259-I")]

$`20`
GI_26051259-I

rs4814683 0.86

Typical use case: finding a collection of strongest associations:

> topFeats(probeId("GI_26051259-I"), mgr = e1, ffind = 1, anno = "illuminaHumanv1.db")

12



rs708954 rs237422 rs11570311 rs6098015 rs6119624 rs6117923 rs6108773

18.56 18.25 17.36 16.39 16.00 15.88 15.58

rs16987350 rs6049299 rs6018244

15.26 14.66 14.45

> topFeats(rsid("rs708954"), mgr = e1, ffind = 1, anno = "illuminaHumanv1.db")

KCNQ2 THBD ATRN SRC NFS1 TP53INP2 PFDN4 EMILIN3

18.56 6.97 5.13 4.13 3.20 2.99 2.86 2.74

TCF15 CST2

2.39 2.19

> topFeats(genesym("SRC"), mgr = e1, ffind = 1, anno = "illuminaHumanv1.db")

rs6117301 rs2983458 rs6116200 rs293554 rs293558 rs293559 rs293544 rs293543

19.08 18.84 18.77 18.09 18.09 18.09 17.42 17.31

rs293553 rs6141319

17.28 16.84

2.2 Expanding to genes on multiple chromosomes

The analysis conducted just above uses genes on chromosome 20. We repeat with some
genes on chromosome 21. First sample the genes:

> g21 = get("21", revmap(illuminaHumanv1CHR))

> samp21 = sample(g21, size = 50, replace = FALSE)

> hlit21 = hmceuB36.2021[probeId(samp21), ]

Now perform the tests, using a different target folder:

> try(system("rm -rf dem50.21"))

> unix.time(e2 <- eqtlTests(hlit21, ~male, geneApply = lapply,

+ targdir = "dem50.21"))

user system elapsed

40.419 2.129 44.551

> e2

eqtlTools results manager, computed Fri Oct 15 00:20:38 2010

There are 2 chromosomes analyzed.

some genes: GI_42822877-S GI_42662331-S ... GI_25952073-A GI_6912315-S

some snps: rs4814683 rs6076506 ... rs6062370 rs6090120

To facilitate interrogation of the two sets of results simultaneously, the eqtlTestsMan-

ager instances need to be coordinated by a cisTransDirector instance.
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> try(system("rm -rf d2021_probetab.ff"))

> try(system("rm -rf d2021_snptab.ff"))

> d1 = mkCisTransDirector(list(e1, e2), "d2021", "snptab", "probetab",

+ "illuminaHumanv1.db")

> d1

eqtlTools cisTransDirector instance.

there are 2 managers.

Total number of SNP: 170086 ; total number of genes: 100

First:

eqtlTools results manager, computed Fri Oct 15 00:19:53 2010

There are 2 chromosomes analyzed.

some genes: GI_26051259-I GI_42734342-S ... hmm26595-S GI_24041039-A

some snps: rs4814683 rs6076506 ... rs6062370 rs6090120

---

use [ (rsnumvec), (geneidvec) ] to obtain chisq stats; topFeats(), etc.

> d1["rs6090120", "GI_42734342-S"]

GI_42734342-S

rs6090120 1.22

You are now managing and interrogating 17 million test results. By increasing the
numbers of genes and SNP held in the smlSet instances passed to eqtlTests you can
increase this. Interfaces need further refinement.
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2.3 Exercises

Question 6. You can use as.ram from the ff package to work directly with data in ff

arrays. You have to be careful or you will create large objects and defeat the purpose of
ff. Show that the gene/SNP combination shown here has a special status in this series
of tests.

rs6126778 rs6034309 rs6123249 rs175786 rs1997924 rs6114695 rs1558384

47.50 39.10 37.59 36.03 35.65 35.41 34.87

rs6139509 rs13045352 rs11905049

34.84 34.84 34.84
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Question 7. Use getGRanges to obtain a Manhattan plot for the gene identified in
question 6, displayed in the browser. You should see something like
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3 Investigating allele-specific expression with RNA-

seq data

We consider a study of read mapping bias in RNA-seq (Degner et al., 2009). We will
consider how to identify SNPs located in exons, how to analyze allele frequencies for such
SNP, and how to check findings against existing sequencing data and eQTL statistics
for a single individual and a HapMap population.

3.1 The data

We will use a samtools pileup representation of RNA-seq data that were aligned using
MAQ and distributed by Degner and colleagues through GEO. We confine attention to
chromosome 6 for individual NA19238, and use the “unmasked” alignment files. Data
from two sequencing runs was combined using samtools merge, and then the pileup was
generated against hg18.

> library(GGtools)

> library(Rsamtools)

> pup238_6 = readPileup(system.file("pup/combn238_chr6.pup", package = "GGtools"),

+ variant = "SNP")

> pup238_6[1:4, ]

GRanges with 4 ranges and 6 elementMetadata values

seqnames ranges strand | referenceBase consensusBase

<Rle> <IRanges> <Rle> | <factor> <factor>

[1] chr6 [40376, 40376] * | C A

[2] chr6 [43893, 43893] * | A C

[3] chr6 [84124, 84124] * | T C

[4] chr6 [84125, 84125] * | G A

consensusQuality snpQuality maxMappingQuality coverage

<integer> <integer> <integer> <integer>

[1] 4 4 0 1

[2] 4 4 0 1

[3] 4 4 0 1

[4] 4 4 0 1

seqlengths

chr6

NA

It will be useful to have the specific pileup of calls as well.

> getPupCalls = function(pupfn) {

+ tmp = strsplit(readLines(pupfn), "\t")
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+ sapply(tmp, "[", 9)

+ }

> callp = getPupCalls(system.file("pup/combn238_chr6.pup", package = "GGtools"))

> elementMetadata(pup238_6)$callp = callp

> pup238_6[144:148, ]

GRanges with 5 ranges and 7 elementMetadata values

seqnames ranges strand | referenceBase consensusBase

<Rle> <IRanges> <Rle> | <factor> <factor>

[1] chr6 [249623, 249623] * | C A

[2] chr6 [249625, 249625] * | T A

[3] chr6 [249662, 249662] * | G A

[4] chr6 [256482, 256482] * | C T

[5] chr6 [256873, 256873] * | C T

consensusQuality snpQuality maxMappingQuality coverage callp

<integer> <integer> <integer> <integer> <character>

[1] 25 25 27 3 ^6A^?A^?A

[2] 60 60 38 11 AAAAAAAAAA^UA

[3] 33 33 56 2 A$A

[4] 4 4 0 1 T

[5] 4 4 40 1 ^It

seqlengths

chr6

NA

3.2 Filtering to “coding SNP”; checking for de novo variants

We have derived a GRanges instance with addresses of exons on chromosome 6, using
the GenomicFeatures facilities for extracting feature data from UCSC tables.

> library(GenomicFeatures)

> data(ex6)

> ex6[1:4, ]

GRanges with 4 ranges and 1 elementMetadata value

seqnames ranges strand | exon_id

<Rle> <IRanges> <Rle> | <integer>

[1] chr6 [292101, 292560] + | 83906

[2] chr6 [304628, 304661] + | 83907

[3] chr6 [311880, 311962] + | 83908

[4] chr6 [335114, 335163] + | 83909
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seqlengths

chr1 chr2 ... chr18_gl000207_random

249250621 243199373 ... 4262

> exp_6 = pup238_6[which(ranges(pup238_6) %in% ranges(ex6)), ]

How many of the SNP variants in this individual reside in exons? Restrict the pileup
data to these.

> sum(ranges(pup238_6) %in% ranges(ex6))

[1] 2581

> isExonic = which(ranges(pup238_6) %in% ranges(ex6))

> pup238_6x = pup238_6[isExonic, ]

How many of these exonic variants are already catalogued in the May 2009 dnSNP
database?

> library(SNPlocs.Hsapiens.dbSNP.20100427)

> s6 = getSNPlocs("ch6")

> s6[1:5, ]

RefSNP_id alleles_as_ambig loc

1 845718 Y 88813

2 845717 R 88857

3 28836829 R 88920

4 28770826 S 88972

5 56715894 R 89010

> knownLocs = IRanges(s6$loc, s6$loc)

> indbsnp = ranges(pup238_6x) %in% knownLocs

> sum(indbsnp)

[1] 17

What are the heterozygosity frequencies at known and potentially novel SNP loca-
tions?

> p6xknown = pup238_6x[which(indbsnp), ]

> p6xnovel = pup238_6x[-which(indbsnp), ]

> nKnown = length(p6xknown)

> nhetKnown = sum(!(elementMetadata(p6xknown)$consensusBase %in%

+ c("A", "C", "G", "T")))

> nhetKnown/nKnown
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[1] 0

> nNovel = length(p6xnovel)

> nhetNovel = sum(!(elementMetadata(p6xnovel)$consensusBase %in%

+ c("A", "C", "G", "T")))

> nhetNovel/nNovel

[1] 0.03510140

3.3 Assessing allelic imbalance in transcripts harboring SNPs

What exactly are we looking for? A guide is available through the table published by
Degner et al.

> data(degnerASE01)

> antab = with(degnerASE01, degnerASE01[chr == "chr6" & indiv ==

+ "GM19238", 1:8])

> antab

rsnum refreads nonrefreads miscall chr loc gene indiv

2 rs1042448 72 4 0 chr6 33162320 HLA-DPB1 GM19238

29 rs3025040 56 133 7 chr6 43861029 VEGFA GM19238

46 rs7192 212 317 0 chr6 32519624 HLA-DRA GM19238

48 rs7739387 4 32 0 chr6 34730399 C6orf106 GM19238

50 rs8084 388 518 2 chr6 32519013 HLA-DRA GM19238

This shows 5 loci related to 4 genes for which there is evidence of allele-specific expres-
sion, in that the individual is heterozygous at the locus, but the transcript abundance
measures are skewed towards one of the two alleles present.

To check for this on the basis of our pileup data, we have a little tabulation function:

> tabCalls = function(pup, ind) {

+ ac = as.character

+ empup = elementMetadata(pup)

+ ref = ac(empup$referenceBase[ind])

+ maqcall = ac(empup$consensusBase[ind])

+ puptag = gsub("\\^.", "", empup$callp[ind])

+ list(ref = ref, maqcall = maqcall, calls = table(strsplit(puptag,

+ "")))

+ }

In the following, we tind overlaps between our exonic loci and the tabulated locations,
and tabulate the available calls. First we build a little utility that returns nucleotides
given an ambiguous code.
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> library(Biostrings)

> decodeIU = function(x) {

+ if (length(x) > 1)

+ warning("only handling first entry")

+ strsplit(IUPAC_CODE_MAP[toupper(x)], "")[[1]]

+ }

Now we identify those locations from the Degner table that coincide with our pileup-
based ranges. There is an idiosyncratic but intuitive matrix result wrapped in S4.

> ol = findOverlaps(IRanges(antab$loc, width = 1), ranges(pup238_6x))

> ol

An object of class "RangesMatching"

Slot "matchMatrix":

query subject

[1,] 4 1489

Slot "DIM":

[1] 5 2581

In the following, we generate a little report to summarize the comparisons.

> for (i in 1:nrow(ol@matchMatrix)) { # ONEOFF

+ cat("query", i, "\n")

+ print(t1 <- antab[ ol@matchMatrix[i, "query"], ])

+ t2 <- tabCalls( pup238_6x, ol@matchMatrix[i, "subject"])

+ print(t2[["calls"]])

+ dpref = t1[1,2]/(t1[1,2]+t1[1,3])

+ cat("Degner refFreq =", round(dpref,4),"\n")

+ dpuprefinds = which(toupper(names(t2[["calls"]])) %in% c(",", "."))

+ targcodes = decodeIU( t2[["maqcall"]] )

+ altcode = setdiff(targcodes, t2[["ref"]])

+ dpupaltinds = which(toupper(names(t2[["calls"]])) == altcode)

+ dpuppref = sum(t2[["calls"]][dpuprefinds])/(sum(t2[["calls"]][dpuprefinds])+

+ sum(t2[["calls"]][dpupaltinds]))

+ cat("Pileup refFreq =", round(dpuppref,4),"\n")

+ cat("---\n")

+ }

query 1

rsnum refreads nonrefreads miscall chr loc gene indiv

48 rs7739387 4 32 0 chr6 34730399 C6orf106 GM19238
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, . C c

2 1 11 5

Degner refFreq = 0.1111

Pileup refFreq = 0.1579

---

The correspondence is very close. Unfortunately there is relatively low coverage for the
most extreme imbalances.

3.4 Checking consistency of findings with GENEVAR expres-
sion arrays

The hmyriB36 package of Bioconductor’s experimental data archive includes expression
and genotyping data on 90 YRI individuals including NA19238. The expression data
are distributed by the GENEVAR project (Stranger et al., 2007).

> library(hmyriB36)

> if (!exists("hmyriB36")) data(hmyriB36)

> library(illuminaHumanv1.db)

> pidVEGFA = get("VEGFA", revmap(illuminaHumanv1SYMBOL))

> ve = exprs(hmyriB36)[pidVEGFA, "NA19238"]

The following code can be used to check for relationship between allele copy number for
a SNP and array-based expression values:

> plot_EvG(genesym("VEGFA"), rsid("rs3025040"), hmyriB36)

> abline(h = ve)
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3.5 Exercises

Question 8. Check the array-based expression configurations for the other four genes
with potential allele-specific expression.

Question 9. Write code that scans all the exonic SNP on chr6 and identifies loci
with potential imbalance. You might modify the code snippet marked ONEOFF above.
What statistical tests and multiple testing corrections should you use?

Question 10. Acquire the data on NA19239 and reproduce some of the key entries
of the Degner table.
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4 Appendix: samtools pileup format, from samtools

distribution site

Pileup Format

Pileup format is first used by Tony Cox and Zemin Ning at the Sanger
Institute. It describes the base-pair information at each chromosomal
position. This format facilitates SNP/indel calling and brief alignment
viewing by eyes.

The pileup format has several variants. The default output by SAMtools looks like this:

seq1 272 T 24 ,.$.....,,.,.,...,,,.,..^+. <<<+;<<<<<<<<<<<=<;<;7<&
seq1 273 T 23 ,.....,,.,.,...,,,.,..A <<<;<<<<<<<<<3<=<<<;<<+
seq1 274 T 23 ,.$....,,.,.,...,,,.,... 7<7;<;<<<<<<<<<=<;<;<<6
seq1 275 A 23 ,$....,,.,.,...,,,.,...^l. <+;9*<<<<<<<<<=<<:;<<<<
seq1 276 G 22 ...T,,.,.,...,,,.,.... 33;+<<7=7<<7<&<<1;<<6<
seq1 277 T 22 ....,,.,.,.C.,,,.,..G. +7<;<<<<<<<&<=<<:;<<&<
seq1 278 G 23 ....,,.,.,...,,,.,....^k. %38*<<;<7<<7<=<<<;<<<<<
seq1 279 C 23 A..T,,.,.,...,,,.,..... ;75&<<<<<<<<<=<<<9<<:<<

where each line consists of chromosome, 1-based coordinate, reference base, the number
of reads covering the site, read bases and base qualities. At the read base
column, a dot stands for a match to the reference base on the forward strand, a
comma for a match on the reverse strand, `ACGTN' for a mismatch on the forward
strand and `acgtn' for a mismatch on the reverse strand. A pattern `\+[0-9]+[ACGTNacgtn]+'
indicates there is an insertion between this reference position and the next reference
position. The length of the insertion is given by the integer in the pattern, followed
by the inserted sequence. Here is an example of 2bp insertions on three reads:

seq2 156 A 11 .$......+2AG.+2AG.+2AGGG <975;:<<<<<

Similarly, a pattern `-[0-9]+[ACGTNacgtn]+' represents a deletion from the reference.
Here is an exmaple of a 4bp deletions from the reference, supported by two reads:

seq3 200 A 20 ,,,,,..,.-4CACC.-4CACC....,.,,.^~. ==<<<<<<<<<<<::<;2<<

Also at the read base column, a symbol `^' marks the start of a read segment which is
a contiguous subsequence
on the read separated by `N/S/H' CIGAR operations. The ASCII of the character
following `^' minus 33 gives the mapping quality. A symbol `$' marks the end of a read
segment. Start and end markers of a read are largely inspired by Phil Green's CALF
format. These markers make it possible to reconstruct the read sequences from pileup.
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5 Session information

> toLatex(sessionInfo())

• R version 2.13.0 Under development (unstable) (2010-10-12 r53293),
x86_64-apple-darwin10.4.0

• Locale: C

• Base packages: base, datasets, grDevices, graphics, methods, splines, stats, tools,
utils

• Other packages: AnnotationDbi 1.11.8, Biobase 2.9.2, Biostrings 2.17.47,
DBI 0.2-5, GGBase 3.9.4, GGtools 3.7.66, GenomicFeatures 1.1.12,
GenomicRanges 1.1.29, IRanges 1.7.35, RCurl 1.4-3, RSQLite 0.9-2,
Rsamtools 1.1.17, SNPlocs.Hsapiens.dbSNP.20100427 0.99.2, annotate 1.27.1,
bit 1.1-6, bitops 1.0-4.1, codetools 0.2-2, digest 0.4.2, ff 2.1-2, hmyriB36 0.99.4,
illuminaHumanv1.db 1.6.0, org.Hs.eg.db 2.4.5, rtracklayer 1.9.9,
snpMatrix 1.13.3, survival 2.35-8, weaver 1.15.0

• Loaded via a namespace (and not attached): BSgenome 1.17.7,
GSEABase 1.11.2, KernSmooth 2.23-3, XML 3.1-1, annaffy 1.21.0,
biomaRt 2.5.1, graph 1.27.25, xtable 1.5-6
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