genomeIntervals

April 20, 2011

С

Combine genome intervals objects

Description

S3 methods for combining several genome intervals into a single one.

Usage

```
## S3 method for class 'Genome\_intervals':
c(...)
## S3 method for class 'Genome\_intervals\_stranded':
c(...)
```

Arguments

... Genome_intervals or Genome_intervals_stranded objects.

Details

If the arguments have mixed classes (both Genome_intervals or Genome_intervals_stranded), then they are coerced to Genome_intervals before combination. Otherwise, the common class is used.

Value

A single Genome_intervals or Genome_intervals_stranded object. Input objects are combined in their order of appearance in the the argument list.

If any input argument is not a Genome_intervals, list(...) is returned instead.

Note

These methods will be converted to S4 once the necessary dispatch on ... is supported.

Examples

```
# load toy examples
data("gen_ints")
# combine i and j returns a Genome_intervals_stranded object
c( i, j )
# combine a not-stranded and a stranded returns a not-stranded object
c( as(i, "Genome_intervals"), j )
```

core_annotated Genome intervals with minimal annotation

Description

returns a copy of the input (stranded) genome intervals object with annotations restricted to the minimally required ones.

Usage

core_annotated(x)

Arguments

```
Х
```

A Genome_intervals or Genome_intervals_stranded object.

Value

A copy of x with the annotation slot restricted to seq_name, inter_base and strand (the latter only if x is a Genome_intervals_stranded object).

Examples

```
# load toy examples
data("gen_ints")
# add some non-core annotations to i
annotation(i)$comment = "some non-core annotation"
# i with all annotations
i
# core annotations only
core_annotated(i)
## Not run:
# with different annotation columns, i and j cannot be combined
c( i, j)
## End(Not run)
# core annotated versions can
c( core_annotated(i), core_annotated(j) )
```

distance_to_nearest

Distance in bases to the closest interval(s)

Description

Given two objects, from and to, compute the distance in bases of each from interval to the nearest to interval(s). The distance between a base and the next inter-bases on either side values 0.5. Thus, base - base and inter-base - inter-base intervals distances are integer, whereas base - inter-base intervals distances are half-integers.

Usage

```
## S4 method for signature 'Genome\_intervals,Genome\_intervals':
distance\_to\_nearest(from, to)
## S4 method for signature 'Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_intervals\_stranded,Genome\_stranded,Genome\_stranded,Genome\_stranded,Genome\_stranded
```

Arguments

from	A Genome_intervals or Genome_intervals_stranded objec
to	A Genome_intervals or Genome_intervals object.

Details

A wrapper calling intervals::distance_to_nearest by seq_name and by strand (if both from and to are Genome_intervals_stranded objects). Thus, if both are stranded, distances are computed over each strand separately. One object must be coerced to Genome_intervals if this is not wished.

Value

A numeric vector of distances with one element for each row of from.

See Also

intervals::distance_to_nearest

Examples

```
## load toy examples
data(gen_ints)
## i in close_intervals notation
close_intervals(i)
## j in close_intervals notation
close_intervals(j)
## distances from i to j
dn = distance_to_nearest(i,j)
dn
```

```
## distance == 0 if and only if the interval overlaps another one:
io = interval_overlap(i,j)
if( any( ( sapply(io, length) >0 ) != (!is.na(dn) & dn ==0) ) )
stop("The property 'distance == 0 if and only if the interval overlaps another one' is
## distances without strand-specificity
distance_to_nearest(
    as(i,"Genome_intervals"),
    as(j,"Genome_intervals")
)
```

gen_ints

Genome Intervals examples

Description

Toy examples for testing functions and running examples of the package genomeIntervals.

Usage

data(gen_ints)

Format

Two Genome_intervals_stranded objects, i and j, without inter-base intervals and a third one, k, with.

```
Genome_intervals-class
```

Class "Genome_intervals"

Description

A set of genomic intervals without specified strand. Genomic intervals are intervals over the integers with two further annotations: seq_name (a chromosome or more generally a sequence of origin) and inter_base (logical) that states whether the interval is to be understood as an interval over bases (such as coding-sequence) or inter-bases (such as restriction sites or insertion positions).

Slots

```
.Data: See Intervals_full
```

annotation: A "data.frame" with the same number of rows as .Data. It has a column named seq_name that is a factor and does not contain missing values. seq_name is used to represent the chromosome or more generally the sequence of origin of the intervals. annotation has a column named inter_base that is logical and does not contain missing values. inter_base is FALSE if the interval is to be understood as an interval over bases (such as coding-sequence) and TRUE if it is over inter-bases (such as restriction site or an insertion position). Like base intervals, inter-base interval are encoded over the integers. An inter-base at position n indicates the space between base n and n+1.

closed: See Intervals_full

type: See Intervals_full

Genome_intervals-class

Extends

Class "Intervals_full", directly. Class "Intervals_virtual", by class "Intervals_full", distance 2. Class "matrix", by class "Intervals_full", distance 3. Class "array", by class "Intervals_full", distance 4. Class "structure", by class "Intervals_full", distance 5. Class "vector", by class "Intervals_full", distance 6, with explicit coerce.

Methods

```
[ signature(x = "Genome_intervals"):...
[[ signature(x = "Genome_intervals"):...
[[<- signature(x = "Genome_intervals"):...</pre>
\$ signature(x = "Genome_intervals"):...
\$<- signature(x = "Genome_intervals"):...</pre>
annotation signature(object = "Genome_intervals"):...
annotation<- signature(object = "Genome_intervals"):...</pre>
coerce signature(from = "Genome_intervals", to = "Intervals_full"):...
coerce signature(from = "Genome_intervals", to = "character"):...
distance\_to\_nearest signature(from = "Genome_intervals", to = "Genome_intervals"):
inter\_base signature(x = "Genome_intervals"):...
inter\_base<- signature(x = "Genome_intervals"): ...
interval\_complement signature(x = "Genome_intervals"):...
interval_intersection signature(x = "Genome_intervals"):...
interval\_overlap signature(from = "Genome_intervals", to = "Genome_intervals"):
interval\_union signature(x = "Genome_intervals"):...
seq\_name signature(x = "Genome_intervals"):...
seq\_name<- signature(x = "Genome_intervals"):...</pre>
size signature(x = "Genome_intervals"):...
type<- signature(x = "Genome_intervals"):...</pre>
```

Note

A Genome_intervals is a "Intervals_full" of type Z (i.e. a set of intervals over the integers). The annotation slot can carry further columns that can serve as annotations.

See Also

Genome_intervals_stranded for a derived class that allows stranded genomic intervals.

Examples

```
# The "Genome_intervals" class
i <- new(
 "Genome_intervals",
matrix(
  c(1,2,
    3,5,
   4,6,
   8,9
   ),
  byrow = TRUE,
                ncol = 2
 ),
 closed = matrix(
  с (
  TRUE, FALSE,
  TRUE, FALSE,
  TRUE, TRUE,
  TRUE, FALSE
  ),
  byrow = TRUE,
     ncol = 2
     ),
 annotation = data.frame(
  seq_name = factor(c("chr01", "chr01", "chr02", "chr02")),
  inter_base = c(FALSE, FALSE, TRUE, TRUE)
  )
 )
colnames(i) <- c( "start", "end" )</pre>
# print
print(i)
# size (number of bases per interval)
size(i)
```

genomeIntervals-package

```
Operations on genomic intervals
```

Description

Tools for operation on genomic intervals.

Details

Package:	genomeIntervals
Version:	0.9.6
Date:	2009-01-15
Type:	Package
Depends:	R (>= 2.8.0), intervals (>= 0.10.3), Biobase, methods

Genome_intervals_stranded-class

Suggests:	
License:	Artistic 2.0
BiocViews:	DataImport, Infrastructure, Genetics
LazyLoad:	yes

Index:

Genome_intervals Class "Genome_intervals"
Genome_intervals_stranded Class "Genome_intervals_stranded"
distance_to_nearest Distance in bases to the closest interval(s)
gen_ints Genome Intervals examples
getGffAttribute Pull one or more key/value pairs from gffAttributes strings
interval_overlap Assess overlap from one set of genomic intervals to another
interval_complement Compute the complement of a set of genomic intervals
interval_intersection Compute the intersection of one or more sets of genomic intervals
interval_union Compute the union of genomic intervals in one or more genomic intervals
parseGffAttributes Parse out the gffAttributes column of a Genome_intervals object

readGff3 Make a Genome_intervals_stranded object from a GFF file

Author(s)

Julien Gagneur <gagneur@embl.de>, Richard Bourgon. Maintainer: Julien Gagneur <gagneur@embl.de>

See Also

intervals

Genome_intervals_stranded-class Class "Genome_intervals_stranded"

Description

A set of genomic intervals with a specified strand.

Slots

.Data: See Genome_intervals

annotation: A data.frame (see Genome_intervals for basic requirements). The annotation
 moreover has a strand column that is a factor with exactly two levels(typically "+" and " ").

closed: See Genome_intervals

type: See Genome_intervals

Extends

```
Class "Genome_intervals", directly. Class "Intervals_full", by class "Genome\_intervals", distance 2. Class "Intervals_virtual", by class "Genome\_intervals", distance 3. Class "matrix", by class "Genome\_intervals", distance 4. Class "array", by class "Genome\_intervals", distance 5. Class "structure", by class "Genome\_intervals", distance 6. Class "vector", by class "Genome\_intervals", distance 7, with explicit coerce.
```

Methods

```
coerce signature(from = "Genome_intervals_stranded", to = "character"):
    ...
distance\_to\_nearest signature(from = "Genome_intervals_stranded", to = "Genome_inter
    ...
interval\_complement signature(x = "Genome_intervals_stranded"): ...
interval\_intersection signature(x = "Genome_intervals_stranded"): ...
interval\_overlap signature(to = "Genome_intervals_stranded", from = "Genome_interval
    ...
interval\_union signature(x = "Genome_intervals_stranded"): ...
strand signature(x = "Genome_intervals_stranded"): ...
strand
```

See Also

Genome_intervals the parent class without strand.

Examples

```
# The "Genome_intervals_stranded" class
j <- new(
 "Genome_intervals_stranded",
matrix(
 c(1,2,
   3,5,
   4,6,
   8,9
   ),
 byrow = TRUE,
               ncol = 2
 ),
 closed = matrix(
  с(
  FALSE, FALSE,
  TRUE, FALSE,
  TRUE, TRUE,
  TRUE, FALSE
  ),
 byrow = TRUE,
     ncol = 2
     ),
    annotation = data.frame(
     seq_name = factor( c("chr01", "chr01", "chr02", "chr02") ),
  strand = factor( c("+", "+", "+", "-") ),
```

getGffAttribute

```
inter_base = c(FALSE, FALSE, FALSE, TRUE)
)
### print
print(j)
## size of each interval as count of included bases
size(j)
## close intervals left and right (canonical representation)
close_intervals(j)
```

getGffAttribute Pull one or more key/value pairs from gffAttributes strings

Description

GFF files contain a string, with key/value pairs separated by ";", and the key and value separated by "=". This function quickly extracts one or more key/value pairs.

Usage

```
getGffAttribute(gi, attribute)
```

Arguments

gi	A Genome_intervals object.
attribute	A vector of key names.

Value

A matrix with the same number of rows as gi, and one column per element of attribute.

See Also

See parseGffAttributes for more complete parsing. See the function readGff3 for loading a GFF file.

Examples

```
## head of full gff annotations
head(annotation(gff))
# extract ID and Parent attributes
idpa = getGffAttribute( gff, c( "ID", "Parent" ) )
head(idpa)
```

interval_overlap Assess overlap from one set of genomic intervals to another

Description

Given two objects, a 'from' and a 'to', assess which intervals in 'to' overlap which of 'from'.

Usage

Arguments

from	A Genome_intervals or Genome_intervals_stranded object.
to	A Genome_intervals or Genome_intervals_stranded object.
check_valid	Should validObject be called before passing to compiled code?

Details

A wrapper calling intervals: interval_overlap by seq_name and by strand (if both to and from are "Genome_intervals_stranded" objects).

Value

A list, with one element for each row of from. The elements are vectors of indices, indicating which to rows overlap each from. A list element of length 0 indicates a from with no overlapping to intervals.

interval_union

Examples

```
data(gen_ints)
# i as entered
i
# i in close_intervals notation
close_intervals(i)
# j in close_intervals notation
close_intervals(j)
# list of intervals of j overlapping intervals of i
interval_overlap(i,j)
```

interval_union Genome interval set operations

Description

Compute interval set operations on "Genome_intervals" or "Genome_intervals_stranded" objects.

Usage

```
## S4 method for signature 'Genome\_intervals':
interval\_union(x, ...)
## S4 method for signature 'Genome\_intervals\_stranded':
interval\_union(x, ...)
## S4 method for signature 'Genome\_intervals':
interval\_complement(x)
## S4 method for signature 'Genome\_intervals\_stranded':
interval\_complement(x)
## S4 method for signature 'Genome\_intervals':
interval\_intersection(x, ...)
## S4 method for signature 'Genome\_intervals\_stranded':
interval\_intersection(x, ...)
```

Arguments

Х	A "Genome_intervals" or "Genome_intervals_stranded" object.
	Optionally, additional objects of the same class as x.

Details

Wrappers calling the corresponding functions of the package intervals by same seq_name, inter_base and if needed strand. Note that the union of single input object x returns the reduced form of x, i.e. the interval representation of the covered set.

Value

A single object of appropriate class, representing the union, complement or intersection of intervals computed over entries with same seq_name, inter_base and also strand if all passed objects are of the class "Genome_intervals_stranded".

See Also

interval_union, interval_complement, interval_intersection and reduce
from the package intervals.

Examples

```
## load toy examples
data(gen_ints)
## content of i object
i
## complement
interval_complement(i)
```

reduced form (non-overlapping interval representation of the covered set)
interval_union(i)

```
## union
interval_union(i[1:2,], i[1:4,])
```

```
# map to genome intervals and union again
i.nostrand = as(i,"Genome_intervals")
interval_union(i.nostrand)
```

```
## intersection with a second object
# print i and j in closed interval notation
close_intervals(i)
close_intervals(j)
```

```
# interval_intersection
interval_intersection(i,j)
```

```
#interval intersection non-stranded
interval_intersection(i.nostrand, as(j, "Genome_intervals"))
```

parseGffAttributes Parse out the gffAttributes column of a Genome_intervals object

Description

GFF files contain a string, with key/value pairs separated by ";", and the key and value separated by "=". This function parses such strings into a list of vectors with named elements.

Usage

```
parseGffAttributes(gi)
```

readGff3

Arguments

gi

A Genome_intervals object.

Value

A list, with one element per row of gi. Each element is a character vector with named components. Names correspond to keys, and components correspond to values.

Note

Key/value pairs which are missing the "=" symbol, or which have nothing between it and the ";" delimiter or end of line, will generate a NA value, with a warning. Any key/value "pairs" with more than one "=" cause an error.

See Also

In many cases, getGffAttribute, in this package, is easier and faster. See the function readGff3 for loading a GFF file.

Examples

readGff3

Make a Genome_intervals_stranded object from a GFF file

Description

Make a Genome_intervals_stranded object from a gff file in gff3 format.

Usage

readGff3(file, isRightOpen=TRUE)

Arguments

file	The name of the gff file to read.
isRightOpen	Although a proper GFF3 file follows the convention of right-open intervals, im- proper GFF files following the right-closed convention are frequently found. Set
	isRightOpen = FALSE in this case.

Details

The file must follow gff3 format specifications as in http://www.sequenceontology.org/ gff3.shtml. The file is read as a table. Meta-information (lines starting with \#\#\#) are not parsed. A "." in, for example, the gff file's *score* or *frame* field will be converted to NA. When the GFF file follows the right-open interval convention (isRightOpen is TRUE), then GFF entries for which end base equals first base are recognized as zero-length features and loaded as inter_base intervals. It can be that readGff3 is able to construct a Genome_intervals_stranded object from the input file, although not valid. A warning message is then generated and the constructed object is returned to allow inspection of it.

Value

A Genome_intervals_stranded object image of the gff file. The GFF3 fields seqid, source, type, score, strand, phase and attributes are stored in the annotation slot and renamed as seq_name, source, type, score, strand, phase and gffAttributes respectively.

Note

Potential FASTA entries at the end of the file are ignored.

See Also

The functions getGffAttribute and parseGffAttributes for parsing GFF attributes.

Examples

head(annotation(gff),10)

Index

```
*Topic classes
                                                                  distance_to_nearest,Genome_intervals_stranded,
      Genome_intervals-class,4
                                                                             (distance_to_nearest), 3
     Genome_intervals_stranded-class,
                                                                  gen_ints, 4, 7
           7
                                                                  Genome_intervals, 1-3, 7-9, 13
*Topic datasets
                                                                  Genome intervals-class, 4
      gen_ints,4
*Topic package
                                                                  Genome_intervals_stranded, 1-3, 5,
                                                                             7, 13, 14
      genomeIntervals-package, 6
                                                                  Genome_intervals_stranded-class,
[,Genome_intervals-method
                                                                             7
           (Genome_intervals-class), 4
(genomeIntervals-package),
           (Genome_intervals-class), 4
                                                                             6
[[,Genome_intervals-method
                                                                  genomeIntervals-package, 6
           (Genome_intervals-class), 4
                                                                  getGffAttribute, 7, 9, 13, 14
[[<-, Genome_intervals-method
           (Genome_intervals-class), 4
                                                                  i(gen_ints),4
$,Genome_intervals-method
                                                                  inter_base
           (Genome_intervals-class), 4
                                                                             (Genome_intervals-class), 4
<-, Genome_intervals-method
                                                                  inter_base,Genome_intervals-method
           (Genome_intervals-class), 4
                                                                             (Genome_intervals-class), 4
                                                                  inter_base<-
annotation, Genome_intervals-method
                                                                             (Genome_intervals-class), 4
           (Genome_intervals-class), 4
annotation <-, Genome_intervals, ANY-methoder_base <-, Genome_intervals-method
                                                                             (Genome_intervals-class), 4
           (Genome_intervals-class), 4
                                                                  interval complement, 7, 12
array, 5, 8
                                                                  interval_complement
C. 1
                                                                             (interval_union), 11
coerce, Genome_intervals, character-methinderval_complement, Genome_intervals-method
                                                                             (interval_union), 11
           (Genome_intervals-class), 4
coerce, Genome_intervals, Intervals_fuli-ntervad_complement, Genome_intervals_stranded
           (Genome_intervals-class), 4
                                                                             (interval_union), 11
coerce, Genome_intervals_stranded, characotervadthodersection, 7, 12
           (Genome_intervals_stranded-class),terval_intersection
                                                                             (interval_union), 11
           7
                                                                  interval_intersection, Genome_intervals-method
core annotated, 2
                                                                             (interval_union), 11
core_annotated,Genome_intervals-method
                                                                  interval_intersection, Genome_intervals_strande
           (core_annotated), 2
core_annotated,Genome_intervals_stranded-methimsterval_union),11
                                                                  interval_overlap, 7, 10
           (core_annotated), 2
                                                                  interval_overlap, ANY, missing-method
distance_to_nearest, 3, 7
                                                                             (interval_overlap), 10
distance_to_nearest, Genome_intervals, Gentenevalhap, networke_intervals, Genome_intervals, Genome_interva
           (distance_to_nearest), 3
                                                                             (interval_overlap), 10
```

INDEX

```
16
```

```
interval overlap, Genome intervals stranded Obereonte 10 ntervals stranded-method
                                         vector, 5, 8
       (interval_overlap), 10
interval_overlap, missing, ANY-method
       (interval_overlap), 10
interval_union, 7, 11, 12
interval_union, Genome_intervals-method
       (interval_union), 11
interval_union, Genome_intervals_stranded-method
       (interval_union), 11
intervals,7
intervals::distance_to_nearest,
       3
intervals: interval overlap, 10
Intervals_full, 4, 5, 8
Intervals_virtual, 5,8
j(gen_ints),4
k(gen ints),4
matrix, 5,8
parseGffAttributes, 7, 9, 12, 14
readGff3, 7, 9, 13, 13
reduce, 12
seq_name
       (Genome_intervals-class), 4
seq_name,Genome_intervals-method
       (Genome_intervals-class), 4
seq_name<-
       (Genome_intervals-class), 4
seq_name<-,Genome_intervals-method</pre>
       (Genome_intervals-class), 4
show, Genome_intervals-method
       (Genome_intervals-class), 4
size, Genome_intervals-method
       (Genome_intervals-class), 4
strand
       (Genome_intervals_stranded-class),
       7
strand, Genome intervals stranded-method
       (Genome_intervals_stranded-class),
       7
strand<-
       (Genome_intervals_stranded-class),
strand<-,Genome_intervals_stranded-method</pre>
       (Genome_intervals_stranded-class),
       7
structure, 5, 8
type<-,Genome_intervals-method</pre>
       (Genome_intervals-class), 4
```