
externalVector
April 20, 2011

allIndex-class Class "allIndex", index class representing a subscript for all elements
of a vector or an array dimension

Description

When used as a subscript for a vector object x, this is equivalent to seq(length(x)). When
used as a subscript for the i-th dimension of an array object x, this is equivalent to seq(dim(x)[i]).

Objects from the Class

Objects can be created by calls of the form new("allIndex"). Objects from this class can not
be modified and they are all equivalent.

Slots

.Data: Object of class "logical", this is always equal to TRUE.

Extends

Class "logical", directly. Class "vectorIndex", directly.

Methods

Signature components for the methods are:

x The class "allIndex"
scalar Length one positive "integer"
i The class "ANY"
value The class "ANY"
.Object The class "allIndex"

x+scalar: Add scalar to x. Result is x.

scalar+x: Add scalar to x. Result is x.

x*scalar: Multiply x by scalar. Result is x.

scalar*x: Multiply x by scalar. Result is x.

dim(x) <- value Set a dimension on x. If value is of length 2, this may create a "matrixIndex".

1

2 allNA

x[i]: Subset x. Result is i.

x[]: Subset x with the subscript missing. Result is x.

x[i] <- value: Subassign x. Results in an error (as objects from class "allIndex" are not
mutable.

x[[i]] <- value: Subassign x. Results in an error (as objects from class "allIndex" are
not mutable.

allNA(x): Are all elements of x NA? Result is always FALSE.

anyNA(x): Is any element of x NA? Result is always FALSE.

initialize(.Object): Initialize an object from class "allIndex".

length(x): Return the length of x which is always Inf.

length(x) <- value: Modify the length of x. Always results in an error.

See Also

vectorIndex-class for the super class of "allIndex".

allNA The generics "allNA" and "anyNA".

Description

The two generic "allNA" returns TRUE if all of its arguments are NA’s and FALSE otherwise.

The two generic "anyNA" returns TRUE if any of its arguments is NA and FALSE otherwise.

Usage

allNA(x)
anyNA(x)

Arguments

x An object on which is.na can be applied.

Value

Either TRUE or FALSE.

Examples

allNA(1:3)
allNA(c(NA, NA, NA))
allNA(c(1, 2, NA))
anyNA(1:3)
anyNA(c(NA, NA, NA))
anyNA(c(1, 2, NA))

allocators 3

allocators Generics associated with external resources and their allocators

Description

These are generics used with objects of class "externalResource" and "externalAllocator".

Usage

allocator(resource)
getPointer(resource)
initializeResource(resource, ptr, size, type, ...)
allocatedSize(resource)
allocatedType(resource)
allocate(resource, alloc, size, type, ...)
deallocate(resource, alloc)
external.size(resource, alloc)
external.size(resource, copy, alloc) <- value
reinitializePointer(resource, alloc)

Arguments

resource An object which is an "externalResource".

alloc An object which is an "externalAllocator".

ptr An external pointer.

size The size - if given for a non-vector type, the numebr of bytes. Otherwise, the
length of the vector.

type Object represnting the type stored in the resource.

copy Logical, if TRUE (the default), then the new memory is initialized to the content
of the old memory for the minimum of old and new sizes. Content of any unini-
tialized memory is undefined. Under any circumstance, the inherent type of the
allocated memory remains the same as its initial value.

value Integer, new size.

... Further arguments passed to or from other functions.

Value

allocator returns the allocator to be used by default with resource.

getPointer returns the "externalptr" associated with resource.

initializeResource intializes resource with ptr of type "externalptr" and returns
resource.

allocatedSize returns the size of memory to be allocated for resource. If allocatedType(resource)
is an R basic vector type, then the size is the length of the vector. Otherwise the size is the total
number of bytes.

allocatedType returns an object representing the type to be stored in the resource

allocate allocates the external pointer in resource using the allocator alloc for resource.
If type is a basic vector object, then it allocates an object of same mode with length size and

4 asEach

otherwise allocates size bytes of raw memory. The resource object is initialized by a call to
initializeResource.

deallocate asks the allocator alloc to deallocate the memory in resource. The result is
allocator dependant.

external.size returns the argument size used in the last call to allocate for resource.

The replacement form can be used to change the size of the allocated memory. If value is same as
external.size(resource), then no action is taken. Otherwise, this reallocates the memory
in resource using the allocator alloc (or allocator(resource) if alloc is missing)
with new size value and the same type as earlier.

reinitializePointer tries to reinitialize the memory pointer in resource after resource
was saved and restored as an R image (by serialization code, by saving the R workspace, or by an
explicit call to save).

See Also

externalAllocator-class, externalResource-class

asEach Coerce each element of an external vector to a particular type

Description

This generic coerces each element of an external vector to a particular type.

Usage

asEach(x, type, arrayOnly = FALSE)

Arguments

x An external vector object.

type Character-string, a basic vector mode.

arrayOnly If arrayOnly is FALSE (the default) do not copy extra slots like Names, DimNames
or Dim.

Value

Another external vector object of same length but with class(defaultElement(x)) ==
class(type).

See Also

as to convert an object to a different class.

Examples

x <- externalCharacter(4)
x[] <- c("1", "2", "3", "4")
asEach(x, "integer")

as.Rvector 5

as.Rvector convert an object to an R basic vector or matrix

Description

as.Rvector, a generic, attempts to coerce its argument into a basic R vector of a convenient
mode. All attributes of x are preserved.

Default methods are provided for basic R objects which are returned unchanged by as.Rvector.

as.Rmatrix, a generic, first converts its argument to a basic R vector and then applies as.matrix
to the result.

Usage

as.Rvector(x)
as.Rmatrix(x)

Arguments

x An object

Details

This preserves all the non-slot attributes of the object x when converting to a basic R vector. In
addition, if any of dim(x), dimnames(x), names(x) is not NULL, the corresponding attribute
in the result is also set.

Value

The value from as.Rvector is a basic R vector of mode "logical", "integer", "numeric", "complex",
"character" or "list". The value from as.Rmatrix is a basic R matrix.

See Also

as.vector for converting an object to an appropriate vector with all attributes removed and
as.matrix for converting a vector like object to a matrix.

Examples

x <- 1:2
names(x) <- letters[1:2]
as.vector(x)
as.Rvector(x)
as.Rmatrix(x)

6 exprMatrix-class

defaultElement Return the default element for a vector object.

Description

For a vector object, this generic returns a length one vector with the default element for the vector
as the first (and only) element.

Usage

defaultElement(x)

Arguments

x A vector object.

Value

A length one vector with the default element.

See Also

externalVector-class for the method for this generic for the "externalVector" class.

Examples

defaultElement(1:5)
defaultElement(list(1, 2))

exprMatrix-class Class union for objects behaving like a matrix

Description

Class union "exprMatrix" represents the type of exprs and se.exprs slots in "exprSet" objects. One
of the classes in the union is always "matrix"

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "exprMatrix" in the signature.

externalAllocator-class 7

externalAllocator-class
Class "externalAllocator", base class for memory allocators for exter-
nal resources

Description

Class "externalAllocator" is a virtual class with no slots. It represents memory allocators
that allocate raw memory to be held in an object of class "externalptr". Instead of returning
the "externalptr" object directly, the allocators deal with subclasses of "externalResource"
that hold an object of class "externalptr".

Objects from the Class

A virtual Class: No objects may be created from it.

Virtual Methods

Attempt to execute these methods would result in an error unless they have been redefined for a
subclass of "externalAllocator".

Signature components for implementation of the methods:

resource The class "externalResource"
alloc A subclass of "externalAllocator"
size The class "ANY"
type The class "ANY"
copy The class "logical"
value The class "ANY"

Description of the virtual methods:

allocate(resource, alloc, size, type, . . .): Allocate the external pointer in resource using the al-
locator alloc. If type is a basic vector object, then allocate an object of same mode with
length size. Otherwise allocate size bytes of raw memory. This method should end with a
call to initializeResource to initialize the resource object.

deallocate(resource, alloc): The allocator alloc should try to dealloacte the raw memory in
resource. It should not modify the resource object in any way other than modifying
the object of class "externalptr" in resource to reflect the deallocation.

external.size Return the size of the allocated memory in resource.

external.size<-(resource, copy, alloc, value): If value is same as external.size(resource),
then no action is taken. Otherwise, reallocate the memory in resource using the allocator
alloc with new size value. If copy is TRUE (the default), then the new memory is initial-
ized to the content of the old memory for the minimum of old and new sizes. Content of any
uninitialized memory is undefined.

reinitializePointer(resource, alloc): If the object resource was saved as an R image (by se-
rialization code, by saving the R workspace, or by an explicit call to save) then the raw
memory pointer in any "externalptr" object in it would be set to 0. This method tries to
reinitialize the raw memory pointer. The exact result is allocator dependant.

8 externalMatrix

Author(s)

Saikat DebRoy «saikat@stat.wisc.edu»

See Also

externalResource-class for more on how to use an allocator with objects from subclasses
of "externalResource".

gcAllocator-class for an example of a subclass of "externalAllocator".

setVirtualMethod for more on virtual methods.

externalMatrix Create an external matrix object

Description

This function can be used to create a new external matrix object.

Usage

externalMatrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames =
NULL, storageClass = (if (is(data, "externalVectorWithStorage"))
class(data@storage) else "simpleStorage"), indirect = FALSE)

Arguments

data An optional data vector.

nrow The desired number of rows.

ncol The desired number of columns.

byrow Not used.

dimnames A dimnames value for the external matrix: a list of length 2.

storageClass name of the subclass of "externalStorage" to be used for storing the external
vector elements.

indirect If TRUE, return an "indirectExternalVector" object.

Details

This function is similar to the matrix function in R base package.

Value

If indirect is FALSE (the default) a new external matrix object with correct dimension and
dimnames. Otherwise create a new external vector object but return it by wrapping it in an "indi-
rectExternalMatrix" object with the correct dimension and dimnames.

See Also

matrix

externalResource-class 9

Examples

x <- externalMatrix(1:6, nrow=2, ncol=3)
dim(x)
x[1, 1:2] # drop = FALSE by default
log(x)

externalResource-class
Class "externalResource", base class for external resource allocated
by an externalAllocator

Description

Class "externalResource" is a virtual class with no slots. External allocators, represented
by subclasses of class "externalAllocator" can only allocate external pointers contained in
objects from a subclass of "externalResource".

Objects from the Class

A virtual Class: No objects may be created from it.

Methods for the virtual class "externalResource"

These methods are defined for the virtual class "externalResource" and need not be redefined by its
subclasses.

Signature components for the methods are:

resource The class "externalResource"
alloc The class "missing"
ptr The class "externalptr"
size The class "ANY"
type The class "ANY"
copy The class "logical"
value The class "ANY"

The argument alloc has the class "missing" wherever it appears in these methods. That means, to
invoke these methods, the argument alloc must be ommitted from the call and to use any of the
additional arguments, they must be specfied by name. For example, use allocate(resource,
size=size, type=type) and not allocate(resource, size, type).

Description of the methods:

allocatedType(resource): Returns NULL.

allocate(resource, alloc, size, type, . . .): Allocate the external pointer in resource using the default
allocator for resource. If type is a basic vector object, then allocate an object of same
mode with length size. Otherwise allocate size bytes of raw memory. The resource
object is initialized by a call to initializeResource.

deallocate(resource, alloc): Ask the default allocator to deallocate the memory in resource.
The result is allocator dependant.

10 externalResource-class

external.size Return the argument size used in the last call to allocate for resource

external.size<-(resource, copy, alloc, value): If value is same as external.size(resource),
then no action is taken. Otherwise, reallocate the memory in resource using the default al-
locator with new size value and the same type as earlier. If copy is TRUE (the default),
then the new memory is initialized to the content of the old memory for the minimum of old
and new sizes. Content of any uninitialized memory is undefined. Under any circumstance,
the inherent type of the allocated memory remains the same as its initial value.

initialize(.Object): Code called by new("resourceSubclass", . . .) if "resourceSubclass" is a sub-
class of "externalResource" and either has no initializemethod of its own or its initialize
method has callNextMethod() in its body. Returns the result of allocate(.Object,
...)

reinitializePointer(resource, alloc): If the object resource was saved as an R image (by se-
rialization code, by saving the R workspace, or by an explicit call to save) then the raw
memory pointer in any "externalptr" object in it would be set to 0. This method tries to
reinitialize the raw memory pointer. The exact result is allocator dependant.

Virtual Methods

Attempt to execute these methods would result in an error unless they have been redefined for a
subclass of "externalResource".

Signature components for implementation of the methods:

resource A subclass of "externalResource"
ptr The class "externalptr"
size The class "ANY"
type The class "ANY"

Description of the virtual methods:

allocatedSize(resource): Size of memory to be allocated for resource. If allocatedType(resource)
is an R basic vector type, then the size is the length of the vector. Otherwise the size is the
total number of bytes.

allocator(resource): The allocator to be used by default with this resource.

getPointer(reource): Return the "externalptr" associated with this resource.

initializeResource(resource, ptr, size, type, . . .): Intialize resourcewith ptr of type "externalptr".
The size and type arguments are identical to that obtained from previous calls to allocatedSize(resource)
and allocatedType(resource).

Other Virtual Methods

These methods must be redefined for subclasses for "externalAllocator". It is not necessary
to define them for specific subclasses of "externalResource".

Signature components for implementation of the methods:

resource The class "externalResource"
alloc A subclass of "externalAllocator"
size The class "ANY"
type The class "ANY"
copy The class "logical"
value The class "ANY"

externalStorage-class 11

Description of the virtual methods:

allocate(resource, alloc, size, type, . . .): Allocate the external pointer in resource using the al-
locator alloc.

deallocate(resource, alloc): Ask the allocator alloc to deallocate the memory in resource.

external.size Return the size of the allocated memory in resource.

external.size<-(resource, copy, alloc, value): Reallocate the memory in resource using the al-
locator alloc.

reinitializePointer(resource, alloc): If the raw memory pointer in resource is zero, try to reini-
tialize it.

Author(s)

Saikat DebRoy «saikat@stat.wisc.edu»

See Also

externalAllocator-class for more details on how to use an allocator with objects from
subclasses of "externalResource".

gcAllocator-class for an example of a simple subclass of "externalResource".

setVirtualMethod for more on virtual methods.

externalStorage-class
Class "externalStorage", base class for external storage for objects of
class "externalVectorWithStorage"

Description

The "externalStorage" class represents the base class of the storage backend implementa-
tion used by the class "externalVectorWithSToraghe". A pointer to the external storage
allocated or accessed by an object of class "externalStorage" is kept in an external pointer.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

ptr: Object of class "externalptr", keeps the pointer to the external storage.

type: Object of class "vector", a vector object of length one representing the type of object
stored in the external storage. Usually one of the basic R vector types.

length: Object of class "integer", Cached value for the length of the vector stored in the
external storage.

methodsptr: Object of class "externalptr".

Extends

Class "externalResource", directly.

12 externalVector-class

Methods

Signature components for the methods:

resource The class "externalStorage"
x The class "externalStorage"
ptr The class "externalptr"
size The class "ANY"
type The class "ANY"

allocator(resource): The allocator to be used by default with this resource. Returns an object
of class "gcAllocator".

getPointer(reource): Return the ptr slot.
initializeResource(resource, ptr, size, type, . . .): Set the ptr slot of resource to ptr.
initialize(.Object, type = logical(1), length = as.integer(0)): This checks the validity of type and

length arguments and coerce the length argument to class "integer" before using
them to set the corresponding slots. Finally a call to callNextMethod is made to use the
initializer for class "externalResource"which, via a call to the initializeResource
method above sets ptr slot.

internalType(x): The type of object to be stored within the resource. It is an R basic vector type
("logical", "integer", "numeric", "complex", "character" or "list").

getNativeStorageMethods(x): Get the "externalptr" stored in the "nativeStorageMethods"
object associated with a particular subclass of "externalStorage" and a basic R vector
type.

See Also

setExternalStorageClass for how to set a subclass of "externalStorage".

nativeStorageMethods-class for the C structure containing C function pointers for a par-
ticular storage methods class.

externalVectorWithStorage-class for how the "externalStorage" class is used.

simpleStorage-class for a simple implementation of "externalStorage".

externalVector-class
Class "externalVector", base class for vector objects stored in an ex-
ternal resource

Description

This class represents objects that behave like R basic vectors but are stored in some external re-
source.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

Common signature components for the methods:

externalVector-class 13

x The class "externalVector"
X The class "externalVector"

Description of the methods:

asEach(x, type, arrayOnly) Coerce x so that it now behaves like a basic R vector with the same
class as type.

c(x, . . . , recursive) Combine all the arguments into a single vector. Behaves like a basic R vector
with the same class as type.

as.Rvector(x) Coerce x to a basic R vector with same names, dimension and dimnames (if any of
these are present in x).

as.vector(x, mode) Return an external vector which behaves like a basic R vector of mode mode.

as.logical(x, . . .) Return an external vector with all elements coerced to logical.

as.integer(x, . . .) Return an external vector with all elements coerced to integer.

as.double(x, . . .) Return an external vector with all elements coerced to numeric.

as.numeric(x, . . .) Return an external vector with all elements coerced to numeric.

as.charcater(x) Return an external vector with all elements coerced to character.

as.list(x, . . .) Return an external vector that behaves like a list.

as.single(x, . . .) Return an external vector with all elements coerced to numeric and a "CSingle"
attribute set to TRUE.

as.data.frame(x, row.names, optional) Create a data.frame object from x.

as.matrix(x) If length(dim(x)) is 2, return x unchanged. Otherwise, return x as a matrix
with a single column.

defaultElement(x) The default element of x contained in a basic R vector.

dimnames(x) <- value Set dimnames of x to value.

names(x) <- value Set names of x to value.

show(object) Display object.

apply(X, MARGIN, FUN, . . .) Coerce X to an R matrix and call the default apply method.

lapply(X, FUN, . . .) Lapply for "externalVector" class.

sapply(X, FUN, . . . , simplify, USE.NAMES) Sapply for "externalVector" class.

mean(x, trim = 0, na.rm = FALSE, . . .) Mean and trimmed mean of x.

median(x, na.rm = FALSE) Mean of x.

Virtual Methods

Common signature components for implementation of the virtual methods:

x A subclass of "externalVector"
value The class "ANY"

Description of the virtual methods:

setDimNames(x, value) Set the dimnames of x to value without any error checking or coercion.
Return the modified x.

14 externalVector

setNames(x, value) Set the names of x to value without any error checking or coercion. Return
the modified x.

See Also

externalVectorWithStorage-class,matrixIndex-class, indirectExternalVector-
class, indirectExternalMatrix-class, for subclasses of "externalVector".

externalVector Creating external vectors

Description

These functions can be used to create new external vector objects with newly allocated storage.

Usage

externalVector(type = "logical", length = 0, storageClass = "simpleStorage", indirect = FALSE)
externalLogical(length = 0, storageClass = "simpleStorage", indirect = FALSE)
externalInteger(length = 0, storageClass = "simpleStorage", indirect = FALSE)
externalNumeric(length = 0, storageClass = "simpleStorage", indirect = FALSE)
externalComplex(length = 0, storageClass = "simpleStorage", indirect = FALSE)
externalCharacter(length = 0, storageClass = "simpleStorage", indirect = FALSE)

Arguments

type A character-string, the name of the class of basic R vectors to be represented by
the new external vector object.

length Length of the new external vector

storageClass name of the subclass of "externalStorage" to be used for storing the external
vector elements.

indirect If TRUE, return an "indirectExternalVector" object.

Details

These functions are similar to the vector, logical, integer, numeric, complex and
character functions in the R base package. These functions have an extra argument storageClass
to specify the external storage class to use. The default is to use "simpleStorage" which uses garbage
collected memory from R for storage.

Value

If indirect is FALSE (the default) the a new external vector object of the given length, given
type with elements stored in an external storage object with class storageClass. Otherwise
create the new external vector object but return it by wrapping it in an "indirectExternalVector"
object.

See Also

vector, logical, integer, numeric, complex, character, list

externalVectorWithStorage-class 15

Examples

x <- externalVector("numeric", 4)
x[] <- 1:4
x[1:3]
y <- x+2
y
x+y

externalVectorWithStorage-class
Class "externalVectorWithStorage", external vector class with an ex-
ternal storage for the vector

Description

This is a subclass of "externalVector" that implements the use of arbitrary external backends
for storing the elements of the vector.

Objects from the Class

Objects can be created by calls of the form externalVector(type, lengtyh, storageClass).

Slots

storage: Object of class "externalStorage", the storage backend for the vector elements.

Names: Object of class "vectorNamesType", names of the elements.

Dim: Object of class "integerOrNull", dimension of the object.

DimNames: Object of class "listOrNull", dimnames of the object

Extends

Class "externalVector", directly. Class "vectorNamesType", directly.

Methods

e1 op e2 For any arithmetic or comparison operation op this returns the result of the operation.
Either (or both) of e1 and e2 are of class "externalVectorWithSTorage".

Complex(z) Return the result of an operation in the Complex group generic.

Math(x) Return the result of an operation in the Math group generic.

Summary(x) Return the result of an operation in the Summary group generic.

log(x) Return natural logarithm of x.

log(x, base) Return logarithm of x with base base.

x[i, j, . . . , drop=FALSE] Extract a subset of x according to the given subscripts.

x[i, j, . . . <- value] Subassign of x by value according to the given subscripts.

as.Rvector(x) Coerce x to a basic R vector with same names, dimension and dimnames (if any of
these are present in x).

asEach(x, type, arrayOnly) Coerce x so that it now behaves like a basic R vector with the same
class as type.

16 externalVectorWithStorage-class

colSums(x, na.rm, dims) Return the column sums of x.

colMeans(x, na.rm, dims) Return the column means of x.

rowSums(x, na.rm, dims) Return the row sums of x.

rowMeans(x, na.rm, dims) Return the row means of x.

dim(x) Return the dimension of x.

dim(x) <- value Set the dimension of x to value.

dimnames(x) Return the dimnames of x.

getExternalStorage(x) Return the storage slot of x.

getNativeStorageMethods Return getNativeStorageMethods(x@storage).

is.finite(x) Return an external vector of logicals with same length as x indicating if an element of
x is finite.

is.infinite(x) Return an external vector of logicals with same length as x indicating if an element
of x is infinite.

is.na(x) Return an external vector of logicals with same length as x indicating if an element of x is
NA.

is.nan(x) Return an external vector of logicals with same length as x indicating if an element of x
is NaN.

length(x) Return the length of x.

length(x) <- value Set the length of x to value.

names(x) Return the names of x.

names(x) <- value Set the names of x to value.

lapply(X, FUN, . . .) Lapply for "externalVectorWithStorage" class.

setDimNames(x, value) Set the dimnames of x to value without any error checking or coercion.
Return the modified x.

setNames(x, value) Set the names of x to value without any error checking or coercion. Return
the modified x.

rebind(x, length.x = length(x), type = defaultElement(x), names.x = names(x), dim.x = dim(x), dimnames.x = dimnames(x), . . . , arrayOnly = FALSE)
Create an "externalVectorWithStorage" object with the same external storage back-
end class as x but with (possibly) new length, type, names, dim or dimnames. If arrayOnly is
FALSE, the names, dim and dimnames for the new object are not set.

initialize(.Object, . . .) Initialize a new object from class "externalVectorWithSTorage".

See Also

externalVector and externalMatrix for how how to create new objects from this class
easily.

gcAllocator-class 17

gcAllocator-class Class "gcAllocator", memory allocator class for external resources

Description

A memory allocator class for external resources that allocates memory using R memory manage-
ment system. The allocated memory is freed by the R garbage collector when all refernce to it is
removed.

Objects from the Class

Objects can be created by calls of the form new("gcAllocator").

Extends

Class "externalAllocator", directly.

Methods

Signature components for the methods:

resource The class "externalResource"
alloc The class of "gcAllocator"
size The class "ANY"
type The class "ANY"
copy The class "logical"
value The class "ANY"

Description of the methods:

allocate(resource, alloc, size, type, . . .): Allocate the external pointer in resource. If type is
a basic vector object, then allocate an object of same mode with length size. Otherwise
allocate size bytes of raw memory. The allocation is done by creating an R basic vector with
same class as type and storing it in the protected field of the newly created external pointer.
Ends with a call to initializeResource to initialize the resource object.

deallocate(resource, alloc): Replace the protected field of resource@ptr with R_NilValue.
external.size Return the size of the allocated memory in resource.
external.size<-(resource, copy, alloc, value): If value is same as external.size(resource),

then no action is taken. Otherwise, reallocate the memory in resource with new size
value. If copy is TRUE (the default), then the new memory is initialized to the content
of the old memory for the minimum of old and new sizes. Content of any uninitialized mem-
ory is undefined.

reinitializePointer(resource, alloc): If the object resource was saved as an R image (by serial-
ization code, by saving the R workspace, or by an explicit call to save) then the raw memory
pointer in any "externalptr" object in it would be set to 0. This method reinitializes the
memory (if possible) by using the protected field of the external pointer.

Examples

library(externalVector)

18 getExternalStorage

set a storage class
setClass("testStorage",

representation(ptr="externalptr"),
contains="externalResource")

setMethod("initializeResource", "testStorage",
function(resource, ptr, size, type, ...)

{
resource@ptr <- ptr
resource

})
setMethod("allocator", "testStorage",

function(resource)
new("gcAllocator"))

setMethod("getPointer", "testStorage",
function(resource)
resource@ptr)

setMethod("allocatedSize", "testStorage",
function(resource)
32)

Now create an object from the class
x <- new("testStorage")
x
external.size(x)
external.size(x) <- 64
x
external.size(x)
deallocate(x)
x
external.size(x)

getExternalStorage Extract external storage

Description

This generic extracts the "externalStorage" object associated with an "externalVector" object.

Usage

getExternalStorage(x)

Arguments

x An "externalVector" object.

Value

An "externalStorage" object.

See Also

externalStorage-class, externalVectorWithStorage-class

getNativeStorageMethods 19

getNativeStorageMethods
Return the storage methods associated with an object

Description

For an object from a subclass of "externalStorage" or for an object with an associated subclass of
"externalStorage", this generic returns the "externalptr" stored in the "nativeStorageMethods"
object associated with that subclass of "externalStorage".

Usage

getNativeStorageMethods(x)

Arguments

x An object.

Value

An "externalptr" object with a pointer to a C storageMethods structure.

See Also

nativeStorageMethods-class

indirectExternalMatrix-class
Class "indirectExternalMatrix", class for indirect matrix subset of an
externalVector object.

Description

Objects from this class store an object of class "externalVector" and a matrix subscript for
that object and behaves as if this is an object created by applying that subscript.

Objects from the Class

Objects can be created by calls of the form as("indirectExternalMatrix", vec) where
vec is an object of class "externalVector".

Slots

actual: Object of class "externalVector", the actual object of which this is a subset

index: Object of class "matrixIndex", the vector subscript to get the subset.

Extends

Class "externalVector", directly.

20 indirectExternalVector-class

Methods

e1 op e2 For any arithmetic or comparison operation op this returns the result of the operation.
Either (or both) of e1 and e2 are of class "indirectExternalMatrix".

Complex(z) Return the result of an operation in the Complex group generic.

Math(x) Return the result of an operation in the Math group generic.

Summary(x) Return the result of an operation in the Summary group generic.

log(x) Return natural logarithm of x.

log(x, base) Return logarithm of x with base base.

x[i, j, . . . , drop=FALSE] Extract a subset of x according to the given subscripts.

x[i, j, . . . <- value] Subassign of x by value according to the given subscripts. This assigns to the
correct elements of x@actual.

as.Rvector(x) Coerce x to a basic R vector with same names, dimension and dimnames (if any of
these are present in x).

as.vector(x, mode) Return an R basic vector with mode mode.

as.matrix Return a matrix of appropriate mode .

length(x) Return the length of x.

length(x) <- value Set the length of x to value.

dim(x) Return the dimension of x.

dim(x) <- value Set the dimension of x to value.

dimnames(x) Return the dimnames of x.

dimnames(x) <- value Set the dimnames of x to value.

getExternalStorage(x) Return the storage slot of associated with x@actual.

is.finite(x) Return a vector of logicals with same length as x indicating if an element of x is finite.

is.infinite(x) Return a vector of logicals with same length as x indicating if an element of x is
infinite.

is.na(x) Return a vector of logicals with same length as x indicating if an element of x is NA.

is.nan(x) Return a vector of logicals with same length as x indicating if an element of x is NaN.

force return the result of force(x@actual)[x@index].

See Also

indirectExternalVector-class for the matrix class corresponding to this.

indirectExternalVector-class
Class "indirectExternalVector", class for indirect vector subset of an
externalVector object.

Description

Objects from this class store an object of class "externalVector" and a vector subscript for
that object and behaves as if this is an object created by applying that subscript.

indirectExternalVector-class 21

Objects from the Class

Objects can be created by calls of the form as("indirectExternalVector", vec) where
vec is an object of class "externalVector".

Slots

actual: Object of class "externalVector", the actual object of which this is a subset
index: Object of class "vectorIndex", the vector subscript to get the subset.

Extends

Class "externalVector", directly.

Methods

e1 op e2 For any arithmetic or comparison operation op this returns the result of the operation.
Either (or both) of e1 and e2 are of class "indirectExternalVector".

Complex(z) Return the result of an operation in the Complex group generic.
Math(x) Return the result of an operation in the Math group generic.
Summary(x) Return the result of an operation in the Summary group generic.
log(x) Return natural logarithm of x.
log(x, base) Return logarithm of x with base base.
x[i, j, . . . , drop=FALSE] Extract a subset of x according to the given subscripts.
x[i, j, . . . <- value] Subassign of x by value according to the given subscripts. This assigns to the

correct elements of x@actual.
as.Rvector(x) Coerce x to a basic R vector with same names, dimension and dimnames (if any of

these are present in x).
as.vector(x, mode) Return an R basic vector with mode mode.
as.matrix Return a matrix of appropriate mode .
length(x) Return the length of x.
length(x) <- value Set the length of x to value.
dim(x) Return the dimension of x.
dim(x) <- value Set the dimension of x to value.
dimnames(x) Return the dimnames of x.
dimnames(x) <- value Set the dimnames of x to value.
getExternalStorage(x) Return the storage slot of associated with x@actual.
is.finite(x) Return a vector of logicals with same length as x indicating if an element of x is finite.
is.infinite(x) Return a vector of logicals with same length as x indicating if an element of x is

infinite.
is.na(x) Return a vector of logicals with same length as x indicating if an element of x is NA.
is.nan(x) Return a vector of logicals with same length as x indicating if an element of x is NaN.
setNames(x, value) Set the names of x to value without any error checking or coercion. Return

the modified x.
force return the result of force(x@actual)[x@index].

See Also

indirectExternalMatrix-class for the matrix class corresponding to this.

22 makeSlice

internalType Get a vector object similar to the one stored inside an external storage
object

Description

Get a vector object similar to the one stored inside an external storage object.

Usage

internalType(x)

Arguments

x An "externalStorage" object.

Value

An R basic vector object representing the kind of vector object stored in the x.

See Also

externalStorage-class

makeSlice Create a new object of class "sliceIndex"

Description

Create a new object of class "sliceIndex"

Usage

makeSlice(start = 1, length.slice = 1, stride = 1)

Arguments

start Start of the index.

length.slice Length of the index.

stride Difference between consecutive elements of the index.

Value

An object of class "sliceIndex".

See Also

sliceIndex-class

matrixIndex-class 23

Examples

x <- makeSlice(0, 4, 2)
as(x, "positiveIndex")

matrixIndex-class Class "matrixIndex", index class representing a set of row and column
subscripts for a matrix

Description

Objects of class "matrixIndex" represent subscripts corresponding to a submatrix of some
matrix of a given size. Like the "vectorIndex" subclasses, this is a class for internal use.

Objects from the Class

Objects can be created by calls of the form new("matrixIndex", row, col, origdim,
Names).

Slots

row: Object of class "vectorIndex", the row subscript.

col: Object of class "vectorIndex", the column subscript.

origdim: Object of class "integer", the dimension of the full matrix.

Names: Object of class "vectorNamesType", names for the submatrix elements when the
submatrix is treated as vectors.

Extends

Class "externalVector", directly.

Methods

Signature components for the methods are:

x The class "allIndex"
scalar Length one positive "integer"
i The class "ANY"
j The class "ANY"
drop The class "logical"
value The class "ANY"
.Object The class "allIndex"

x[i, j, drop=FALSE] Create another object of cloass matrixIndex with same origdims rep-
resents a further submatrix of the full matrix. If drop is TRUE and at least one of the dimen-
sions of the answer is 1, the answer is an object of class "vectorIndex" instead.

x[[i]] Get the subscript representing the indices for dimension i.

dim(x) Get the dimension of x.

dimnames(x) Get the dimnames of x.

24 NAIndex-class

length(x) Get the length of x considered as a vector. This is same as prod(dim(x)).

names(x) Get the names of x.

setDimNames(x, value) Set the dimnames of x and return the modified x.

setNames(x, value) Set the names of x and return the modified x.

as(x, "vectorIndex") Coerce x to an object of class "vectorIndex".

See Also

vectorIndex-class for the class of row and column subscripts.

NAIndex-class Class "NAIndex", index class representing a subscript of all NA’s for
a vector or an array dimension

Description

When used as a subscript for a vector object x, this is equivalent to rep(NA, length(x)).
When used as a subscript for the i-th dimension of an array object x, this is equivalent to rep(NA,
dim(x)[i]).

Objects from the Class

Objects can be created by calls of the form new("NAIndex", Length, Names). Length
must be a non-negative integer. Default value for Length is 0. The Names argument, if not
missing, must be of length Length. If missing, Names is taken to be NULL.

Slots

.Data: Object of class "logical", this is always same as NA.

Length: Object of class "integer", this is the length of the index.

Names: Object of class "vectorNamesType", this contains names associated with the ele-
ments of the index (if any).

Extends

Class "logical", directly. Class "vectorIndex", directly.

Methods

Signature components for the methods are:

x The class "allIndex"
scalar Length one positive "integer"
i The class "ANY"
value The class "ANY"
.Object The class "allIndex"

x+scalar: Add scalar to x. Result is x.
scalar+x: Add scalar to x. Result is x.

nativeStorageMethods-class 25

x*scalar: Multiply x by scalar. Result is x.

scalar*x: Multiply x by scalar. Result is x.

dim(x) <- value Set a dimension on x. If value is of length 2, this may create a "matrixIndex".

x[i]: Subset x. If length of i is 0, the result is an object of class "noneIndex". Otherwise, the
result is an object of class "NAIndex" with same length as i.

x[]: Subset x with the subscript missing. Result is x.

x[i] <- value: Subassign x. Results in an error (as objects from class "allIndex" are not
mutable.

x[[i]] <- value: Subassign x. Results in an error (as objects from class "allIndex" are
not mutable.

allNA(x): Are all elements of x NA? Result is always FALSE.

anyNA(x): Is any element of x NA? Result is always FALSE.

initialize(.Object, Length=0, Names): Initialize an object from class "allIndex".

length(x): Return the length of x which is always Inf.

length(x) <- value: Modify the length of x. If value is 0, makes x an object of class
"noneIndex". Otherwise, modifies length of x to value.

names(x): Returns the Names slot of x.

names(x) <- value: Sets the Names slot of x to value.

See Also

vectorIndex-class for the super class of "NAIndex".

nativeStorageMethods-class
Class "nativeStorageMethods", class holding an external pointer to a
C storeageMethods structure.

Description

This simple class has only one purpose - holding an external pointer that contains a pointer to a C
storageMethods structure. The memory for the C structure is allocated by the "gcAllocator"
memory allocator.

Objects from the Class

Objects can be created by calls of the form new("nativeStorageMethods", ...). For
details on how the ... argument to new works, see documentation for the "initialize"
method for class "externalResource".

The ptr slot in a newly created object contains pointer to an uninitialized C storageMethods
structure.

Slots

ptr: Object of class "externalptr"

26 nativeStorageMethodsList-class

Extends

Class "externalResource", directly.

Methods

Signature components of the methods:

resource The class "nativeStorageMethods"
ptr The class "externalptr"
size The class "ANY"
type The class "ANY"

Description of the methods:

allocatedSize(resource): Returns the size of the C storageMethods structure in bytes.

allocator(resource): Returns an object of class "gcAllocator".

getPointer(reource): Return the ptr slot.

initializeResource(resource, ptr, size, type, . . .): Sets the ptr

See Also

nativeStorageMethodsList-class for how this class is used.

externalResource-class for more on the super class of this class.

nativeStorageMethodsList-class
Class "nativeStorageMethodsList", contains objects from class "na-
tiveStorageMethods"

Description

The class "nativeStorageMethodsList" contains a number of slots, all from class "nativeStorageMethods".
Usually, each object of class "nativeStorageMethodsList" is associated with a particular
subclass of "externalSTorage".

Objects from this class are never visible to the user.

Objects from the Class

Objects can be created by calls of the form new("nativeStorageMethodsList"). Any
extra arguments are ignored.

Slots

All slots in this class are objects of class "nativeStorageMethods".

allMethods: Contains the C storageMethods structure with all methods registered (directly
or indirectly) for the associated "externalStorage" class.

logicalMethods: Object returned by getExternalStorageMethods for the associated
"externalStorage" class and type "logical".

noneIndex-class 27

integerMethods: Object returned by getExternalStorageMethods for the associated
"externalStorage" class and type "integer".

numericMethods: Object returned by getExternalStorageMethods for the associated
"externalStorage" class and type "numeric".

complexMethods: Object returned by getExternalStorageMethods for the associated
"externalStorage" class and type "complex".

characterMethods: Object returned by getExternalStorageMethods for the associ-
ated "externalStorage" class and type "character".

listMethods: Object returned by getExternalStorageMethods for the associated "externalStorage"
class and type "list".

Methods

initialize(.Object, . . .) Initializer method for class "nativeStorageMethodsList". This
initializes each of the slots of the class. Any extra argument in ... is ignored.

noneIndex-class Class "noneIndex", index class representing a subscript for none of
the elements of a vector or an array dimension

Description

When used as a subscript for a vector object or for any dimension of an array object this is equivalent
to integer(0).

Objects from the Class

Objects can be created by calls of the form new("noneIndex"). Objects from this class can not
be modified and they are all equivalent.

Slots

.Data: Object of class "integer", this is always equal to integer(0).

Extends

Class "integer", directly. Class "vectorIndex", directly.

Methods

Signature components for the methods are:

x The class "allIndex"
scalar Length one positive "integer"
i The class "ANY"
value The class "ANY"
.Object The class "allIndex"

x+scalar: Add scalar to x. Result is x.

28 nonSlotAttributes

scalar+x: Add scalar to x. Result is x.

x*scalar: Multiply x by scalar. Result is x.

scalar*x: Multiply x by scalar. Result is x.

dim(x) <- value Set a dimension on x. If value is of length 2, this may create a "matrixIndex".

x[i]: Subset x. The result is an object of class "NAIndex" of length same as length(integer(0)[i]).

x[]: Subset x with the subscript missing. Result is x.

x[i] <- value: Subassign x. Results in an error (as objects from class "noneIndex" are
not mutable.

x[[i]] <- value: Subassign x. Results in an error (as objects from class "noneIndex" are
not mutable.

allNA(x): Are all elements of x NA? Result is always FALSE.

anyNA(x): Is any element of x NA? Result is always FALSE.

initialize(.Object): Initialize an object from class "allIndex".

length(x): Return the length of x which is always 0.

length(x) <- value: Modify the length of x. Always results in an error.

See Also

vectorIndex-class for the super class of "noneIndex".

nonSlotAttributes Functions to extract and set attributes which are not slots.

Description

These functions access an object’s attribute list. The first form returns the an object’s attribute list
after removing any attribute which is also a slot for the object. The assignment form makes the list
on the right-hand side of the assignment the object’s attribute list (if appropriate).

Usage

nonSlotAttributes(x)
nonSlotAttributes(x) <- value

Arguments

x An object.

value An appropriate attribute list, or NULL.

See Also

attributes and attributes<-

positiveIndex-class 29

positiveIndex-class
Class "positiveIndex", index class representing a sequence of non-
negative integers

Description

This represents a subscript of arbitrary non-negative integers.

Objects from the Class

Objects can be created by calls of the form new("positiveIndex", val). If val is missing,
the result is an object of class "positiveIndex" of length 0. Otherwise, it is coerced to an
integer and an object of class "positiveIndex" is created which has the same .Data slot as
val. The rangeIndex and noNA slots are calculated by the initialization code.

Slots

.Data: Object of class "integer", the actual index values.

rangeIndex: Object of class "integer" of length 2, same as range(.Data).

noNA: Object of class "logical" of length 1, same as !any(is.na(.Data)).

Extends

Class "integer", directly. Class "vectorIndex", directly.

Methods

Signature components for the methods are:

x The class "allIndex"
scalar Length one positive "integer"
i The class "ANY"
value The class "ANY"
.Object The class "allIndex"

x+scalar Add scalar to x. Result is x with x@.Data replaced by x@.Data+scalar.

scalar+x Add scalar to x. Result is x with x@.Data replaced by x@.Data+scalar.

x*scalar Multiply x by scalar. Result is x with x@.Data replaced by x@.Data*scalar.

scalar*x Multiply x by scalar. Result is x with x@.Data replaced by x@.Data*scalar.

dim(x) <- value Set a dimension on x. If value is of length 2, this may create a "matrixIndex".

x[i] Subset x. If length of i is 0, the result is an object of class "noneIndex". Otherwise, the
result is an object of class "sliceIndex" or of class "positiveIndex".

x[] Subset x with the subscript missing. Result is x.

allNA(x) Are all elements of x NA? Result is all(is.na(x@.Data)).

anyNA(x) Is any element of x NA? Result is any(is.na(x@.Data)).

as.integer(x) Convert x to an R subscript - adds 1 to each element of x@.Data.

30 setDimNames

initialize(.Object, .Data) Initialize .Object.

rebind Allocate a new external vector with external storage

Description

This function allocates a new "externalVectorWithStorage" object with possibly new length, type,
names, dimension or dimnames.

Usage

rebind(x, length.x = length(x), type = x@storage@type,
names.x = x@Names, dim.x = x@Dim,
dimnames.x = x@DimNames, ..., arrayOnly = FALSE)

Arguments

x An object of class "externalVectorWithStorage".

length.x New length.

type New type.

names.x New names.

dim.x New dimension.

dimnames.x New dimnames.

... Other arguments passed to initializer of the class of x.

arrayOnly Just create the data part with no names, dimensions or dimnames.

Value

A new object of same class as x.

See Also

externalVectorWithStorage-class

setDimNames Set names and dimnames

Description

These generics set the names and the dimnames of an object without any sanity checks.

Usage

setNames(object, nm)
setDimNames(object, dnm)

setExternalStorageClass 31

Arguments

object An object.
nm The new names.
dnm The new dimnames.

Value

The object after modification.

See Also

names<-, dimnames<-

setExternalStorageClass
Create subclass of externalStorage

Description

Function to create a subclass of "externalStorage" and associate native C methods with the class.

Usage

setExternalStorageClass(Class, methodNames, ..., contains = "externalStorage", where = topenv(parent.frame()))

Arguments

Class Character string, name for the class.
methodNames Character vector, names of the native C functions for use as methods (see Adding

Native Methods below).
... Other arguments passed to setClass.
contains what classes does this class extend? (These are called superclasses in some

languages.) Should have at least one class name which is a subclass of "exter-
nalStorage".

where The environment in which to store or remove the definition. Defaults to the top-
level environment of the calling function (the global environment for ordinary
computations, but the environment or namespace of a package when loading
that package).

Details

This function does two things. It creates a subclass of "externalStorage". It also associates a set of
given C methods as native methods for this subclass of "externalStorage".

Adding Native Methods

To make the external vectors as efficient as possible, the interface between the storage method
classes and the "externalVectorWithSTorage" class uses a set of C function pointers for each sub-
class of "externalStorage". There are two types of methods - those which are for a particular type of
vector and those which are not for a particular type. For a type xxx where xxx is one of logical,
integer, numeric, complex or character, the type specific functions are

32 setVirtualMethod

xxxGetElt get an element from vector of type xxx
xxxSetElt set an element in a vector of type xxx
xxxSubset subset a vector of type xxx
xxxSubassign subassign a vector of type xxx
xxxGetMatrixElt get an element from matrix of type xxx
xxxSetMatrixElt set an element in a matrix of type xxx
xxxMatrixSubset subset a matrix of type xxx
xxxMatrixSubassign subassign a matrix of type xxx

The functions not specific to any type are

alloc allocate a new storage object
size return the length of the vector in the storage object
resize modify the length of the vector in the storage object

The subset and subassign functions for vectors and matrices have reasonable default implementa-
tions in terms of the element get/set functions - so they need not be implemented for each "exter-
nalStorage" subclass.

The methodNames argument to setExternalStorageClass must be used to register any
C function for use as a particular method. This argument must be a character vector with elements
of the form methodName=functionName where methodName is one of the method names
given in the tables above and function name is a C function name which has been registered as a C
function with R using the foreign function registration mechanism. See the chapter on “System and
foreign language interfaces” in “Writing R Extensions” in the ‘doc/manual’ subdirectory of the R
source tree for more details on registering C functions.

See Also

setClass for possible arguments in externalStorage-class for the "externalStorage"
class.

Examples

Not run:
setExternalStorageClass("simpleStorage", c(logicalGetElt="simpleLogicalGetElt",

logicalSetElt="simpleLogicalSetElt",
numericGetElt="simpleNumericGetElt",
numericSetElt="simpleNumericSetElt",
size="simpleSize",
resize="simpleResize"
alloc="simpleAlloc"),

contains = "externalStorage")

End(Not run)

setVirtualMethod Set a virtual method for a given signature

setVirtualMethod 33

Description

This sets a method for a signature. If there is no generic with the given name, it also creates the
appropriate generic. If called, the method generates an error indicating the classes of the arguments
which are part of the signature.

Usage

setVirtualMethod(name, signature.virtual, signature.nonvirtual = character(), ..., where = topenv(parent.frame()))

Arguments

name The character-string name of the generic function.
signature.virtual

Signature of the arguments for which the virtual method is being set. All of
these arguments must have a virtual class in the signature.

signature.nonvirtual
Signature for other arguments. Any ommitted argument is assumed to have class
"ANY".

... Other arguments. See details.

where The database in which to store the definition of the method.

Details

If the generic for name is not defined, an attempt is made to create it with setGeneric(name,
..., where = where).

Value

This method exists for its side-effect of setting up the virtual method.

The return value is the result from the call to setMethod to create the virtual method.

See Also

setGeneric, setMethod

Examples

setClass("myMatrix")
setVirtualMethod("dim", "myMatrix")
setVirtualMethod("dimnames", "myMatrix")
setClass("myMatrix2", representation(val="numeric",

d = "integer",
dn = "list"),

contains="myMatrix")
x <- new("myMatrix2", val=1:4, d = as.integer(c(2, 2)),

dn = list(LETTERS[1:2], letters[1:2]))
A call dim(x) or dimnames(x) would generate an error here
setMethod("dim", "myMatrix", function(x) x@d)
setMethod("dimnames", "myMatrix", function(x) x@dn)
dim(x)
dimnames(x)

34 simpleStorage-class

simpleStorage-class
Class "simpleStorage", an external storage class that uses reference
to R basic vectors as storage

Description

The class "simpleStorage" is an implementation of the "externalStorage" class. The
actual storage for the vector object is contained in an R basic vector referenced through the ptr
slot.

Objects from the Class

Objects can be created by calls of the form new("simpleStorage", type, length). See
the initialize method for "externalStorage" for details.

Slots

ptr: Object of class "externalptr", keeps the R basic vector in the protected field. For
"logical", "integer", "numeric", "complex", the address field of the external
pointer also holds a pointer to the data in the basic R vector.

type: Object of class "vector", a vector object of length one representing the type of object
stored in the external storage. Usually one of the basic R vector types.

length: Object of class "integer", Cached value for the length of the vector stored in the
external storage.

Extends

Class "externalStorage", directly. Class "externalResource", by class "externalStorage".

Methods

Signature components for the methods:

resource The class "simpleStorage"

Description of the methods:

allocatedSize(resource) Length of the vector to be stored.

allocatedType The type of vector to be stored.

See Also

externalStorage-class to see details of the super class.

externalVector to create "externalVector" objects that use this resource.

sliceIndex-class 35

sliceIndex-class Class "sliceIndex", index class representing a sequence of non-
negative integers

Description

This represents a sequence that can be created with seq(start, by=stride, length=n)
where star >= 0 and start+(n-1)*stride >= 0.

Objects from the Class

Objects can be created by calls of the form makeSlice(start, length, stride).

Slots

content: Object of class "numeric" of length 3. The first element of content is the start of
the index, the second element is the length of the index, and the third element is the difference
between successive elements of the index.

Names: Object of class "vectorNamesType", this contains names associated with the ele-
ments of the index (if any).

Extends

Class "vectorIndex", directly.

Methods

Signature components for the methods are:

x The class "allIndex"
scalar Length one positive "integer"
i The class "ANY"
value The class "ANY"
.Object The class "allIndex"

x+scalar: Add scalar to x. Result is xwith x@content[1] replaced by x@content[1]+scalar.
scalar+x: Add scalar to x. Result is xwith x@content[1] replaced by x@content[1]+scalar.
x*scalar: Multiply x by scalar. Result is xwith x@content[3] replaced by x@content[3]*scalar.
scalar*x: Multiply x by scalar. Result is xwith x@content[3] replaced by x@content[3]*scalar.
x[i]: Subset x. If length of i is 0, the result is an object of class "noneIndex". Otherwise, the

result is an object of class "sliceIndex" or of class "positiveIndex".
dim(x) <- value Set a dimension on x. If value is of length 2, this may create a "matrixIndex".
x[]: Subset x with the subscript missing. Result is x.
allNA(x): Are all elements of x NA? Result is always FALSE.
anyNA(x): Is any element of x NA? Result is always FALSE.
length(x): Return the length of x.
length(x) <- value: Modify the length of x. If value is 0, makes x an object of class

"noneIndex". Otherwise, modifies length of x to value.

36 SubscriptList

names(x): Returns the Names slot of x.

names(x) <- value : Sets the Names slot of x to value.

SubscriptList Function to convert a list of array subscripts to a list objects of class
vectorIndex.

Description

SubscriptList takes a list of subscripts to a subset or subassign operation and converts each subscript
to an object belonging to the virtual class vectorIndex.

Usage

SubscriptList(subs, length.object, dim.object = NULL, names.object = NULL, dimnames.object = NULL, assign.operation = FALSE)

Arguments

subs An object of class "list", elements are valid subscripts.
length.object

A scalar of class "integer", representing the length of the object being subsetted
or subassigned.

dim.object An object of class "integer" or NULL, the dimension of the object.

names.object An object belonging to class union "validNamesClass", the names of the object
viewed as a vector.

dimnames.object
NULL or an object of class "list", each of whose elements are objects belonging
to class union "validNamesClass".

assign.operation
A scalar of class "logical", if TRUE the subscripts are for a subasign operation,
if FALSE, the subscripts are for a subset operation.

Value

An object of class "list" of same length as subs with each element a

Author(s)

Saikat DebRoy «saikat@stat.wisc.edu»

See Also

See class union vectorNamesType-class for possible subscripts which are matched against
the names.object or elements of dimnames.object.

Also see class union vectorIndex-class for some other possible subscripts and for all possi-
ble elements in the returned list.

Finally, see [for other subscripts that are valid.

Subset 37

Examples

subs <- alist(i= , j=)
subs$j <- 1:4
SubscriptList(subs, 15, c(3, 5))
SubscriptList(list(i=c("a", "c"), j=-2), 15, c(3, 5),

dimnames=list(letters[1:3], LETTERS[1:5]))

Subset Generics Subset and Subset2 in package ‘externalVector’ and their
methods

Description

The generics Subset and Subset2 and their methods are used internally and are not for general use.
They may be replaced by C code in future.

union-class Some useful class unions

Description

The class "listOrNull" is a union of the classes "list" and "NULL". The class "listOrNull" is a
union of the classes "list" and "NULL". The class "vectorNamesType" is a union of the classes
"character", "NULL" and "externalVectorWithStorage".

Objects from the Class

These are virtual classes: no objects may be created from them.

Methods

No methods defined with class "listOrNull", "integerOrNull" or "vectorNamesType" in the signa-
ture.

var Correlation, Variance and Covariance (Matrices)

Description

var, cov and cor compute the variance of x and the covariance or correlation of x and y if these
are vectors. If x and y are matrices then the covariances (or correlations) between the columns of
x and the columns of y are computed.

cov2cor scales a covariance matrix into the corresponding correlation matrix efficiently.

38 var

Usage

var(x, y, na.rm = FALSE, use)

cov(x, y, use = "all.obs",
method = c("pearson", "kendall", "spearman"))

cor(x, y, use = "all.obs",
method = c("pearson", "kendall", "spearman"))

cov2cor(V)

Arguments

x a numeric vector, matrix or data frame.
y NULL (default) or a vector, matrix or data frame with compatible dimensions to

x. The default is equivalent to y = x (but more efficient).
na.rm logical. Should missing values be removed?
use an optional character string giving a method for computing covariances in the

presence of missing values. This must be (an abbreviation of) one of the strings
"all.obs", "complete.obs" or "pairwise.complete.obs".

method a character string indicating which correlation coefficient (or covariance) is to
be computed. One of "pearson" (default), "kendall", or "spearman",
can be abbreviated.

V symmetric numeric matrix, usually positive definite such as a covariance matrix.

Details

For cov and cor one must either give a matrix or data frame for x or give both x and y.

var is just another interface to cov, where na.rm is used to determine the default for use when
that is unspecified. If na.rm is TRUE then the complete observations (rows) are used (use =
"complete") to compute the variance. Otherwise (use = "all"), var will give an error if
there are missing values.

If use is "all.obs", then the presence of missing observations will produce an error. If use
is "complete.obs" then missing values are handled by casewise deletion. Finally, if use has
the value "pairwise.complete.obs" then the correlation between each pair of variables is
computed using all complete pairs of observations on those variables. This can result in covariance
or correlation matrices which are not positive semidefinite.

The denominator n − 1 is used which gives an unbiased estimator of the (co)variance for i.i.d.
observations. These functions return NA when there is only one observation (whereas S-PLUS has
been returning NaN), and fail if x has length zero.

For cor(), if method is "kendall" or "spearman", Kendall’s τ or Spearman’s ρ statistic is
used to estimate a rank-based measure of association. These are more robust and have be recom-
mended if the data do not necessarily come from a bivariate normal distribution.
For cov(), a non-Pearson method is unusual but available for the sake of completeness. Note
that "spearman" basically computes cor(R(x), R(y)) (or cov(.,.)) where R(u) :=
rank(u, na.last="keep").

Scaling a covariance matrix into a correlation one can be achieved in many ways, mathematically
most appealing by multiplication with a diagonal matrix from left and right, or more efficiently by
using sweep(.., FUN = "/") twice. The cov2cor function is even a bit more efficient, and
provided mostly for didactical reasons.

vectorIndex-class 39

Value

For r <- cor(*, use = "all.obs"), it is now guaranteed that all(r <= 1).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth \&
Brooks/Cole.

See Also

cor.test (package ctest) for confidence intervals (and tests).

cov.wt for weighted covariance computation.

sd for standard deviation (vectors).

Examples

x <- externalNumeric(10)
x[] <- 1:10
var(x)# 9.166667

var(x[1:5],x[1:5])# 2.5

Two simple vectors
cor(x,x+1)# == 1

vectorIndex-class Class "vectorIndex", base class for index classes used to represent
vector subscripts

Description

Together, all subclasses of this class represent the possible representations of vector subscripts and
subscripts for individual array dimensions.

Usually users would not create objects from any of the subclasses of "vectorIndex" directly.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "vectorIndex" in the signature.

See Also

allIndex-class, noneIndex-class, NAIndex-class, sliceIndex-class, positiveIndex-
class, all of which are subclasses of"vectorIndex".

Index

∗Topic array
externalMatrix, 8
SubscriptList, 36
var, 37

∗Topic attribute
nonSlotAttributes, 28
setDimNames, 30

∗Topic classes
allIndex-class, 1
as.Rvector, 5
asEach, 4
exprMatrix-class, 6
externalAllocator-class, 7
externalResource-class, 9
externalStorage-class, 11
externalVector, 14
externalVector-class, 12
externalVectorWithStorage-class,

15
gcAllocator-class, 17
getExternalStorage, 18
getNativeStorageMethods, 19
indirectExternalMatrix-class,

19
indirectExternalVector-class,

20
internalType, 22
makeSlice, 22
matrixIndex-class, 23
NAIndex-class, 24
nativeStorageMethods-class,

25
nativeStorageMethodsList-class,

26
noneIndex-class, 27
positiveIndex-class, 29
rebind, 30
setExternalStorageClass, 31
simpleStorage-class, 34
sliceIndex-class, 35
union-class, 37
vectorIndex-class, 39

∗Topic list

SubscriptList, 36
∗Topic methods

allIndex-class, 1
allNA, 2
allocators, 3
defaultElement, 6
externalAllocator-class, 7
externalResource-class, 9
nativeStorageMethods-class,

25
setVirtualMethod, 32
Subset, 37

∗Topic multivariate
var, 37

∗Topic programming
getNativeStorageMethods, 19
setExternalStorageClass, 31

∗Topic univar
var, 37

[, 36
[,NAIndex,ANY,ANY,ANY-method

(NAIndex-class), 24
[,NAIndex,allIndex,ANY,ANY-method

(NAIndex-class), 24
[,NAIndex,noneIndex,ANY,ANY-method

(NAIndex-class), 24
[,allIndex,ANY,missing,missing-method

(allIndex-class), 1
[,allIndex,missing,missing,missing-method

(allIndex-class), 1
[,externalVectorWithStorage,ANY,ANY,ANY-method

(externalVectorWithStorage-class),
15

[,indirectExternalMatrix,ANY,ANY,ANY-method
(indirectExternalMatrix-class),
19

[,indirectExternalMatrix,ANY,ANY,missing-method
(indirectExternalMatrix-class),
19

[,indirectExternalMatrix,ANY,missing,logical-method
(indirectExternalMatrix-class),
19

[,indirectExternalMatrix,ANY,missing,missing-method

40

INDEX 41

(indirectExternalMatrix-class),
19

[,indirectExternalMatrix,missing,ANY,logical-method
(indirectExternalMatrix-class),
19

[,indirectExternalMatrix,missing,ANY,missing-method
(indirectExternalMatrix-class),
19

[,indirectExternalMatrix,missing,missing,logical-method
(indirectExternalMatrix-class),
19

[,indirectExternalMatrix,missing,missing,missing-method
(indirectExternalMatrix-class),
19

[,indirectExternalVector,ANY,missing,ANY-method
(indirectExternalVector-class),
20

[,indirectExternalVector,missing,missing,ANY-method
(indirectExternalVector-class),
20

[,matrixIndex,ANY,ANY,ANY-method
(matrixIndex-class), 23

[,noneIndex,ANY,missing,missing-method
(noneIndex-class), 27

[,noneIndex,logical,missing,missing-method
(noneIndex-class), 27

[,noneIndex,missing,missing,missing-method
(noneIndex-class), 27

[,positiveIndex,ANY,missing,ANY-method
(positiveIndex-class), 29

[,positiveIndex,positiveIndex,missing,ANY-method
(positiveIndex-class), 29

[,positiveIndex,sliceIndex,missing,ANY-method
(positiveIndex-class), 29

[,sliceIndex,ANY,missing,ANY-method
(sliceIndex-class), 35

[,sliceIndex,allIndex,missing,ANY-method
(sliceIndex-class), 35

[,sliceIndex,noneIndex,missing,ANY-method
(sliceIndex-class), 35

[,sliceIndex,positiveIndex,missing,ANY-method
(sliceIndex-class), 35

[,sliceIndex,sliceIndex,missing,ANY-method
(sliceIndex-class), 35

[<-,NAIndex,ANY,ANY,ANY-method
(NAIndex-class), 24

[<-,allIndex,ANY,ANY,ANY-method
(allIndex-class), 1

[<-,externalVectorWithStorage,ANY,ANY,ANY-method
(externalVectorWithStorage-class),
15

[<-,externalVectorWithStorage,ANY,ANY,externalVectorWithStorage-method

(externalVectorWithStorage-class),
15

[<-,indirectExternalMatrix,ANY,ANY,ANY-method
(indirectExternalMatrix-class),
19

[<-,indirectExternalMatrix,missing,missing,ANY-method
(indirectExternalMatrix-class),
19

[<-,indirectExternalVector,ANY,missing,ANY-method
(indirectExternalVector-class),
20

[<-,indirectExternalVector,missing,missing,ANY-method
(indirectExternalVector-class),
20

[<-,noneIndex,ANY,ANY,ANY-method
(noneIndex-class), 27

[[,matrixIndex,numeric,missing-method
(matrixIndex-class), 23

[[<-,NAIndex-method
(NAIndex-class), 24

[[<-,allIndex-method
(allIndex-class), 1

[[<-,noneIndex-method
(noneIndex-class), 27

allIndex-class, 39
allIndex-class, 1
allNA, 2
allNA,allIndex-method

(allIndex-class), 1
allNA,ANY-method (allNA), 2
allNA,indirectExternalMatrix-method

(indirectExternalMatrix-class),
19

allNA,indirectExternalVector-method
(indirectExternalVector-class),
20

allNA,matrixIndex-method
(matrixIndex-class), 23

allNA,NAIndex-method
(NAIndex-class), 24

allNA,noneIndex-method
(noneIndex-class), 27

allNA,positiveIndex-method
(positiveIndex-class), 29

allNA,sliceIndex-method
(sliceIndex-class), 35

allocate (allocators), 3
allocate,externalResource,externalAllocator-method

(externalAllocator-class),
7

allocate,externalResource,gcAllocator-method
(gcAllocator-class), 17

42 INDEX

allocate,externalResource,missing-method
(externalResource-class), 9

allocatedSize (allocators), 3
allocatedSize,externalResource-method

(externalResource-class), 9
allocatedSize,nativeStorageMethods-method

(nativeStorageMethods-class),
25

allocatedSize,simpleStorage-method
(simpleStorage-class), 34

allocatedType (allocators), 3
allocatedType,externalResource-method

(externalResource-class), 9
allocatedType,simpleStorage-method

(simpleStorage-class), 34
allocator (allocators), 3
allocator,externalResource-method

(externalResource-class), 9
allocator,externalStorage-method

(externalStorage-class), 11
allocator,nativeStorageMethods-method

(nativeStorageMethods-class),
25

allocators, 3
anyNA (allNA), 2
anyNA,allIndex-method

(allIndex-class), 1
anyNA,ANY-method (allNA), 2
anyNA,indirectExternalMatrix-method

(indirectExternalMatrix-class),
19

anyNA,indirectExternalVector-method
(indirectExternalVector-class),
20

anyNA,matrixIndex-method
(matrixIndex-class), 23

anyNA,NAIndex-method
(NAIndex-class), 24

anyNA,noneIndex-method
(noneIndex-class), 27

anyNA,positiveIndex-method
(positiveIndex-class), 29

anyNA,sliceIndex-method
(sliceIndex-class), 35

apply,externalVector-method
(externalVector-class), 12

Arith,allIndex,numeric-method
(allIndex-class), 1

Arith,ANY,externalVectorWithStorage-method
(externalVectorWithStorage-class),
15

Arith,ANY,indirectExternalMatrix-method

(indirectExternalMatrix-class),
19

Arith,ANY,indirectExternalVector-method
(indirectExternalVector-class),
20

Arith,ANY,vectorIndex-method
(vectorIndex-class), 39

Arith,externalVectorWithStorage,ANY-method
(externalVectorWithStorage-class),
15

Arith,externalVectorWithStorage,externalVectorWithStorage-method
(externalVectorWithStorage-class),
15

Arith,externalVectorWithStorage,missing-method
(externalVectorWithStorage-class),
15

Arith,indirectExternalMatrix,ANY-method
(indirectExternalMatrix-class),
19

Arith,indirectExternalMatrix,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

Arith,indirectExternalMatrix,indirectExternalVector-method
(indirectExternalMatrix-class),
19

Arith,indirectExternalVector,ANY-method
(indirectExternalVector-class),
20

Arith,indirectExternalVector,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

Arith,indirectExternalVector,indirectExternalVector-method
(indirectExternalVector-class),
20

Arith,NAIndex,numeric-method
(NAIndex-class), 24

Arith,noneIndex,numeric-method
(noneIndex-class), 27

Arith,numeric,allIndex-method
(allIndex-class), 1

Arith,numeric,NAIndex-method
(NAIndex-class), 24

Arith,numeric,noneIndex-method
(noneIndex-class), 27

Arith,numeric,positiveIndex-method
(positiveIndex-class), 29

Arith,numeric,sliceIndex-method
(sliceIndex-class), 35

Arith,positiveIndex,numeric-method
(positiveIndex-class), 29

Arith,sliceIndex,numeric-method
(sliceIndex-class), 35

INDEX 43

Arith,vectorIndex,ANY-method
(vectorIndex-class), 39

as, 4
as.character,externalVector-method

(externalVector-class), 12
as.complex,externalVector-method

(externalVector-class), 12
as.data.frame,externalVector-method

(externalVector-class), 12
as.double,externalVector-method

(externalVector-class), 12
as.integer,externalVector-method

(externalVector-class), 12
as.integer,positiveIndex-method

(positiveIndex-class), 29
as.list,externalVector-method

(externalVector-class), 12
as.logical,externalVector-method

(externalVector-class), 12
as.matrix, 5
as.matrix,externalVector-method

(externalVector-class), 12
as.matrix,indirectExternalMatrix-method

(indirectExternalMatrix-class),
19

as.matrix,indirectExternalVector-method
(indirectExternalVector-class),
20

as.numeric,externalVector-method
(externalVector-class), 12

as.Rmatrix (as.Rvector), 5
as.Rmatrix,ANY-method

(as.Rvector), 5
as.Rmatrix,matrix-method

(as.Rvector), 5
as.Rvector, 5
as.Rvector,array-method

(as.Rvector), 5
as.Rvector,character-method

(as.Rvector), 5
as.Rvector,complex-method

(as.Rvector), 5
as.Rvector,externalVector-method

(externalVector-class), 12
as.Rvector,externalVectorWithStorage-method

(externalVectorWithStorage-class),
15

as.Rvector,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

as.Rvector,indirectExternalVector-method
(indirectExternalVector-class),

20
as.Rvector,integer-method

(as.Rvector), 5
as.Rvector,list-method

(as.Rvector), 5
as.Rvector,logical-method

(as.Rvector), 5
as.Rvector,matrix-method

(as.Rvector), 5
as.Rvector,numeric-method

(as.Rvector), 5
as.single,externalVector-method

(externalVector-class), 12
as.vector, 5
as.vector,externalVector-method

(externalVector-class), 12
as.vector,indirectExternalMatrix,ANY-method

(indirectExternalMatrix-class),
19

as.vector,indirectExternalMatrix,missing-method
(indirectExternalMatrix-class),
19

as.vector,indirectExternalVector,ANY-method
(indirectExternalVector-class),
20

as.vector,indirectExternalVector,missing-method
(indirectExternalVector-class),
20

asEach, 4
asEach,ANY,character-method

(asEach), 4
asEach,externalVector,character-method

(externalVector-class), 12
asEach,externalVectorWithStorage,character-method

(externalVectorWithStorage-class),
15

attributes, 28
attributes<-, 28

c,externalVector-method
(externalVector-class), 12

character, 14
coerce,externalVector,indirectExternalMatrix-method

(indirectExternalMatrix-class),
19

coerce,externalVector,indirectExternalVector-method
(indirectExternalVector-class),
20

coerce,externalVector,matrix-method
(externalVector-class), 12

coerce,externalVector,vector-method
(externalVector-class), 12

44 INDEX

coerce,indirectExternalMatrix,matrix-method
(indirectExternalMatrix-class),
19

coerce,indirectExternalMatrix,vector-method
(indirectExternalMatrix-class),
19

coerce,indirectExternalVector,matrix-method
(indirectExternalVector-class),
20

coerce,indirectExternalVector,vector-method
(indirectExternalVector-class),
20

coerce,integer,positiveIndex-method
(positiveIndex-class), 29

coerce,matrix,externalVector-method
(externalVector-class), 12

coerce,matrix,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

coerce,matrixIndex,vectorIndex-method
(matrixIndex-class), 23

coerce,numeric,positiveIndex-method
(positiveIndex-class), 29

coerce,sliceIndex,positiveIndex-method
(sliceIndex-class), 35

coerce,vector,externalVector-method
(externalVector-class), 12

coerce,vector,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

coerce,vector,indirectExternalVector-method
(indirectExternalVector-class),
20

colMeans,externalVectorWithStorage,ANY,missing-method
(externalVectorWithStorage-class),
15

colMeans,externalVectorWithStorage,logical,numeric-method
(externalVectorWithStorage-class),
15

colMeans,externalVectorWithStorage,missing,ANY-method
(externalVectorWithStorage-class),
15

colMeans,externalVectorWithStorage,missing,missing-method
(externalVectorWithStorage-class),
15

colSums,externalVectorWithStorage,ANY,missing-method
(externalVectorWithStorage-class),
15

colSums,externalVectorWithStorage,logical,numeric-method
(externalVectorWithStorage-class),
15

colSums,externalVectorWithStorage,missing,ANY-method

(externalVectorWithStorage-class),
15

colSums,externalVectorWithStorage,missing,missing-method
(externalVectorWithStorage-class),
15

Compare,ANY,externalVectorWithStorage-method
(externalVectorWithStorage-class),
15

Compare,ANY,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

Compare,ANY,indirectExternalVector-method
(indirectExternalVector-class),
20

Compare,externalVectorWithStorage,ANY-method
(externalVectorWithStorage-class),
15

Compare,externalVectorWithStorage,externalVectorWithStorage-method
(externalVectorWithStorage-class),
15

Compare,indirectExternalMatrix,ANY-method
(indirectExternalMatrix-class),
19

Compare,indirectExternalMatrix,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

Compare,indirectExternalMatrix,indirectExternalVector-method
(indirectExternalMatrix-class),
19

Compare,indirectExternalVector,ANY-method
(indirectExternalVector-class),
20

Compare,indirectExternalVector,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

Compare,indirectExternalVector,indirectExternalVector-method
(indirectExternalVector-class),
20

complex, 14
Complex,externalVectorWithStorage-method

(externalVectorWithStorage-class),
15

Complex,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

Complex,indirectExternalVector-method
(indirectExternalVector-class),
20

cor (var), 37
cor,ANY,ANY-method (var), 37
cor,ANY,externalVector-method

(externalVector-class), 12

INDEX 45

cor,ANY,missing-method (var), 37
cor,externalVector,ANY-method

(externalVector-class), 12
cor.test, 39
cov (var), 37
cov,ANY,ANY-method (var), 37
cov,ANY,externalVector-method

(externalVector-class), 12
cov,ANY,missing-method (var), 37
cov,externalVector,ANY-method

(externalVector-class), 12
cov.wt, 39
cov2cor (var), 37
cov2cor,externalVector-method

(externalVector-class), 12

deallocate (allocators), 3
deallocate,externalResource,externalAllocator-method

(externalAllocator-class),
7

deallocate,externalResource,gcAllocator-method
(gcAllocator-class), 17

deallocate,externalResource,missing-method
(externalResource-class), 9

defaultElement, 6
defaultElement,externalVector-method

(externalVector-class), 12
defaultElement,vector-method

(defaultElement), 6
dim,externalVectorWithStorage-method

(externalVectorWithStorage-class),
15

dim,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

dim,indirectExternalVector-method
(indirectExternalVector-class),
20

dim,matrixIndex-method
(matrixIndex-class), 23

dim<-,allIndex,ANY-method
(allIndex-class), 1

dim<-,externalVectorWithStorage,ANY-method
(externalVectorWithStorage-class),
15

dim<-,externalVectorWithStorage,NULL-method
(externalVectorWithStorage-class),
15

dim<-,indirectExternalMatrix,ANY-method
(indirectExternalMatrix-class),
19

dim<-,indirectExternalMatrix,NULL-method
(indirectExternalMatrix-class),

19
dim<-,indirectExternalVector,ANY-method

(indirectExternalVector-class),
20

dim<-,NAIndex,ANY-method
(NAIndex-class), 24

dim<-,noneIndex,ANY-method
(noneIndex-class), 27

dim<-,positiveIndex,ANY-method
(positiveIndex-class), 29

dim<-,sliceIndex,ANY-method
(sliceIndex-class), 35

dimnames,externalVectorWithStorage-method
(externalVectorWithStorage-class),
15

dimnames,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

dimnames,indirectExternalVector-method
(indirectExternalVector-class),
20

dimnames,matrixIndex-method
(matrixIndex-class), 23

dimnames<-,externalVector,list-method
(externalVector-class), 12

dimnames<-,externalVector,NULL-method
(externalVector-class), 12

dimnames<-,indirectExternalMatrix,ANY-method
(indirectExternalMatrix-class),
19

dimnames<-,indirectExternalVector,ANY-method
(indirectExternalVector-class),
20

dimnames<-, 31

exprMatrix-class, 6
external.size (allocators), 3
external.size,externalResource,externalAllocator-method

(externalAllocator-class),
7

external.size,externalResource,gcAllocator-method
(gcAllocator-class), 17

external.size,externalResource,missing-method
(externalResource-class), 9

external.size<- (allocators), 3
external.size<-,externalResource,ANY,missing,ANY-method

(externalResource-class), 9
external.size<-,externalResource,logical,externalAllocator,ANY-method

(externalAllocator-class),
7

external.size<-,externalResource,logical,gcAllocator,numeric-method
(gcAllocator-class), 17

externalAllocator-class, 4, 11

46 INDEX

externalAllocator-class, 7
externalCharacter

(externalVector), 14
externalComplex (externalVector),

14
externalInteger (externalVector),

14
externalList (externalVector), 14
externalLogical (externalVector),

14
externalMatrix, 8, 16
externalNumeric (externalVector),

14
externalResource-class, 4, 8, 26
externalResource-class, 9
externalStorage-class, 18, 22, 32, 34
externalStorage-class, 11
externalVector, 14, 16, 34
externalVector-class, 6
externalVector-class, 12
externalVectorWithStorage-class,

12, 14, 18, 30
externalVectorWithStorage-class,

15

force,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

force,indirectExternalVector-method
(indirectExternalVector-class),
20

gcAllocator-class, 8, 11
gcAllocator-class, 17
getExternalStorage, 18
getExternalStorage,externalVectorWithStorage-method

(externalVectorWithStorage-class),
15

getExternalStorage,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

getExternalStorage,indirectExternalVector-method
(indirectExternalVector-class),
20

getNativeStorageMethods, 19
getNativeStorageMethods,ANY-method

(getNativeStorageMethods),
19

getNativeStorageMethods,externalStorage-method
(externalStorage-class), 11

getNativeStorageMethods,externalVectorWithStorage-method
(externalVectorWithStorage-class),
15

getPointer (allocators), 3
getPointer,externalResource-method

(externalResource-class), 9
getPointer,externalStorage-method

(externalStorage-class), 11
getPointer,nativeStorageMethods-method

(nativeStorageMethods-class),
25

indirectExternalMatrix-class, 14,
21

indirectExternalMatrix-class, 19
indirectExternalVector-class, 14,

20
indirectExternalVector-class, 20
initialize,allIndex-method

(allIndex-class), 1
initialize,externalResource-method

(externalResource-class), 9
initialize,externalStorage-method

(externalStorage-class), 11
initialize,externalVectorWithStorage-method

(externalVectorWithStorage-class),
15

initialize,NAIndex-method
(NAIndex-class), 24

initialize,nativeStorageMethodsList-method
(nativeStorageMethodsList-class),
26

initialize,noneIndex-method
(noneIndex-class), 27

initialize,positiveIndex-method
(positiveIndex-class), 29

initializeResource (allocators), 3
initializeResource,externalResource,externalptr-method

(externalResource-class), 9
initializeResource,externalStorage-method

(externalStorage-class), 11
initializeResource,nativeStorageMethods-method

(nativeStorageMethods-class),
25

integer, 14
integerOrNull-class

(union-class), 37
internalType, 22
internalType,externalStorage-method

(externalStorage-class), 11
is.finite,externalVectorWithStorage-method

(externalVectorWithStorage-class),
15

is.finite,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

INDEX 47

is.finite,indirectExternalVector-method
(indirectExternalVector-class),
20

is.infinite,externalVectorWithStorage-method
(externalVectorWithStorage-class),
15

is.infinite,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

is.infinite,indirectExternalVector-method
(indirectExternalVector-class),
20

is.na,externalVectorWithStorage-method
(externalVectorWithStorage-class),
15

is.na,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

is.na,indirectExternalVector-method
(indirectExternalVector-class),
20

is.nan,externalVectorWithStorage-method
(externalVectorWithStorage-class),
15

is.nan,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

is.nan,indirectExternalVector-method
(indirectExternalVector-class),
20

lapply,externalVector-method
(externalVector-class), 12

lapply,externalVectorWithStorage-method
(externalVectorWithStorage-class),
15

length,allIndex-method
(allIndex-class), 1

length,externalVectorWithStorage-method
(externalVectorWithStorage-class),
15

length,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

length,indirectExternalVector-method
(indirectExternalVector-class),
20

length,matrixIndex-method
(matrixIndex-class), 23

length,NAIndex-method
(NAIndex-class), 24

length,noneIndex-method
(noneIndex-class), 27

length,sliceIndex-method
(sliceIndex-class), 35

length<-,allIndex-method
(allIndex-class), 1

length<-,externalVectorWithStorage-method
(externalVectorWithStorage-class),
15

length<-,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

length<-,indirectExternalVector-method
(indirectExternalVector-class),
20

length<-,NAIndex-method
(NAIndex-class), 24

length<-,noneIndex-method
(noneIndex-class), 27

length<-,sliceIndex-method
(sliceIndex-class), 35

list, 14
listOrNull-class (union-class), 37
log,externalVectorWithStorage-method

(externalVectorWithStorage-class),
15

log,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

log,indirectExternalVector-method
(indirectExternalVector-class),
20

logical, 14

makeSlice, 22
match,ANY,externalVectorWithStorage-method

(externalVectorWithStorage-class),
15

match,externalVectorWithStorage,ANY-method
(externalVectorWithStorage-class),
15

Math,externalVectorWithStorage-method
(externalVectorWithStorage-class),
15

Math,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

Math,indirectExternalVector-method
(indirectExternalVector-class),
20

matrix, 8
matrixIndex-class, 14
matrixIndex-class, 23
mean,externalVector-method

(externalVector-class), 12

48 INDEX

median,externalVector,ANY-method
(externalVector-class), 12

median,externalVector,missing-method
(externalVector-class), 12

NA, 38
NAIndex-class, 39
NAIndex-class, 24
names,externalVectorWithStorage-method

(externalVectorWithStorage-class),
15

names,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

names,indirectExternalVector-method
(indirectExternalVector-class),
20

names,matrixIndex-method
(matrixIndex-class), 23

names,NAIndex-method
(NAIndex-class), 24

names,sliceIndex-method
(sliceIndex-class), 35

names<-,externalVector,ANY-method
(externalVector-class), 12

names<-,externalVector,externalVector-method
(externalVector-class), 12

names<-,externalVector,NULL-method
(externalVector-class), 12

names<-,externalVectorWithStorage,NULL-method
(externalVectorWithStorage-class),
15

names<-,indirectExternalMatrix,ANY-method
(indirectExternalMatrix-class),
19

names<-,indirectExternalVector,NULL-method
(indirectExternalVector-class),
20

names<-,NAIndex,ANY-method
(NAIndex-class), 24

names<-,NAIndex,externalVector-method
(NAIndex-class), 24

names<-,sliceIndex,ANY-method
(sliceIndex-class), 35

names<-,sliceIndex,externalVector-method
(sliceIndex-class), 35

names<-, 31
nativeStorageMethods-class, 12, 19
nativeStorageMethods-class, 25
nativeStorageMethodsList-class,

26
nativeStorageMethodsList-class,

26

noneIndex-class, 39
noneIndex-class, 27
nonSlotAttributes, 28
nonSlotAttributes<-

(nonSlotAttributes), 28
numeric, 14

Ops,ANY,externalVectorWithStorage-method
(externalVectorWithStorage-class),
15

Ops,ANY,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

Ops,ANY,indirectExternalVector-method
(indirectExternalVector-class),
20

Ops,externalVectorWithStorage,ANY-method
(externalVectorWithStorage-class),
15

Ops,indirectExternalMatrix,ANY-method
(indirectExternalMatrix-class),
19

Ops,indirectExternalMatrix,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

Ops,indirectExternalMatrix,indirectExternalVector-method
(indirectExternalMatrix-class),
19

Ops,indirectExternalVector,ANY-method
(indirectExternalVector-class),
20

Ops,indirectExternalVector,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

Ops,indirectExternalVector,indirectExternalVector-method
(indirectExternalVector-class),
20

positiveIndex-class, 39
positiveIndex-class, 29

rebind, 30
rebind,externalVectorWithStorage-method

(externalVectorWithStorage-class),
15

reinitializePointer (allocators),
3

reinitializePointer,externalResource,externalAllocator-method
(externalAllocator-class),
7

reinitializePointer,externalResource,gcAllocator-method
(gcAllocator-class), 17

INDEX 49

reinitializePointer,externalResource,missing-method
(externalResource-class), 9

rowMeans,externalVectorWithStorage,ANY,missing-method
(externalVectorWithStorage-class),
15

rowMeans,externalVectorWithStorage,logical,numeric-method
(externalVectorWithStorage-class),
15

rowMeans,externalVectorWithStorage,missing,ANY-method
(externalVectorWithStorage-class),
15

rowMeans,externalVectorWithStorage,missing,missing-method
(externalVectorWithStorage-class),
15

rowSums,externalVectorWithStorage,ANY,missing-method
(externalVectorWithStorage-class),
15

rowSums,externalVectorWithStorage,logical,numeric-method
(externalVectorWithStorage-class),
15

rowSums,externalVectorWithStorage,missing,ANY-method
(externalVectorWithStorage-class),
15

rowSums,externalVectorWithStorage,missing,missing-method
(externalVectorWithStorage-class),
15

sapply,externalVector-method
(externalVector-class), 12

sd, 39
setClass, 32
setDimNames, 30
setDimNames,externalVector-method

(externalVector-class), 12
setDimNames,externalVectorWithStorage-method

(externalVectorWithStorage-class),
15

setDimNames,matrixIndex-method
(matrixIndex-class), 23

setExternalStorageClass, 12, 31
setGeneric, 33
setMethod, 33
setNames (setDimNames), 30
setNames,externalVector-method

(externalVector-class), 12
setNames,externalVectorWithStorage-method

(externalVectorWithStorage-class),
15

setNames,indirectExternalVector-method
(indirectExternalVector-class),
20

setNames,matrixIndex-method
(matrixIndex-class), 23

setVirtualMethod, 8, 11, 32
show,externalVector-method

(externalVector-class), 12
simpleStorage-class, 12
simpleStorage-class, 34
sliceIndex-class, 22, 39
sliceIndex-class, 35
SubscriptList, 36
Subset, 37
Subset,ANY,allIndex-method

(Subset), 37
Subset,ANY,ANY-method (Subset), 37
Subset,ANY,matrixIndex-method

(Subset), 37
Subset,ANY,NAIndex-method

(Subset), 37
Subset,ANY,noneIndex-method

(Subset), 37
Subset,ANY,positiveIndex-method

(Subset), 37
Subset,ANY,sliceIndex-method

(Subset), 37
Subset-methods (Subset), 37
Subset2 (Subset), 37
Subset2,ANY,allIndex,allIndex-method

(Subset), 37
Subset2,ANY,allIndex,ANY-method

(Subset), 37
Subset2,ANY,allIndex,NAIndex-method

(Subset), 37
Subset2,ANY,ANY,allIndex-method

(Subset), 37
Subset2,ANY,ANY,ANY-method

(Subset), 37
Subset2,ANY,ANY,NAIndex-method

(Subset), 37
Subset2,ANY,ANY,noneIndex-method

(Subset), 37
Subset2,ANY,ANY,positiveIndex-method

(Subset), 37
Subset2,ANY,ANY,sliceIndex-method

(Subset), 37
Subset2,ANY,NAIndex,allIndex-method

(Subset), 37
Subset2,ANY,NAIndex,ANY-method

(Subset), 37
Subset2,ANY,NAIndex,NAIndex-method

(Subset), 37
Subset2,ANY,noneIndex,ANY-method

(Subset), 37
Subset2,ANY,noneIndex,noneIndex-method

(Subset), 37

50 INDEX

Subset2,ANY,positiveIndex,ANY-method
(Subset), 37

Subset2,ANY,positiveIndex,positiveIndex-method
(Subset), 37

Subset2,ANY,sliceIndex,ANY-method
(Subset), 37

Subset2,ANY,sliceIndex,sliceIndex-method
(Subset), 37

Subset2-methods (Subset), 37
Summary,externalVectorWithStorage,logical-method

(externalVectorWithStorage-class),
15

Summary,externalVectorWithStorage,missing-method
(externalVectorWithStorage-class),
15

Summary,externalVectorWithStorage-method
(externalVectorWithStorage-class),
15

Summary,indirectExternalMatrix,ANY-method
(indirectExternalMatrix-class),
19

Summary,indirectExternalMatrix-method
(indirectExternalMatrix-class),
19

Summary,indirectExternalVector,ANY-method
(indirectExternalVector-class),
20

Summary,indirectExternalVector-method
(indirectExternalVector-class),
20

sweep, 38

union-class, 37

var, 37
var,ANY,ANY-method (var), 37
var,ANY,externalVector-method

(externalVector-class), 12
var,ANY,missing-method (var), 37
var,externalVector,ANY-method

(externalVector-class), 12
vector, 14
vectorIndex-class, 2, 24, 25, 28, 36
vectorIndex-class, 39
vectorNamesType-class, 36
vectorNamesType-class

(union-class), 37

	allIndex-class
	allNA
	allocators
	asEach
	as.Rvector
	defaultElement
	exprMatrix-class
	externalAllocator-class
	externalMatrix
	externalResource-class
	externalStorage-class
	externalVector-class
	externalVector
	externalVectorWithStorage-class
	gcAllocator-class
	getExternalStorage
	getNativeStorageMethods
	indirectExternalMatrix-class
	indirectExternalVector-class
	internalType
	makeSlice
	matrixIndex-class
	NAIndex-class
	nativeStorageMethods-class
	nativeStorageMethodsList-class
	noneIndex-class
	nonSlotAttributes
	positiveIndex-class
	rebind
	setDimNames
	setExternalStorageClass
	setVirtualMethod
	simpleStorage-class
	sliceIndex-class
	SubscriptList
	Subset
	union-class
	var
	vectorIndex-class
	Index

