# ROC

# April 20, 2011

AUC

functionals of ROC curve

#### Description

various functionals of ROC (Receiver Operating Characteristic) curves

#### Usage

```
AUC(rocobj)
AUCi(rocobj)
pAUC(rocobj,t0)
pAUCi(rocobj,t0)
```

#### Arguments

| rocobj | element of class rocc                                                   |
|--------|-------------------------------------------------------------------------|
| t0     | FPR point at which TPR is evaluated or limit in $(0,1)$ to integrate to |

# Details

AUC, pAUC, AUCi and pAUCi compute the Area Under the Curve.

AUC and pAUC employ the trapezoidal rule. AUCi and pAUCi use integrate().

AUC and AUCi compute the area under the curve from 0 to 1 on the x-axis (i.e., the 1 - specificity axis).

pAUC and pAUCi compute the are under the curve from 0 to argument t0 on the x-axis (i.e., the 1 - specificity axis).

Elements of class rocc can be created by rocdemo.sca() or other constructors you might make using the code of rocdemo.sca() as a template.

#### Author(s)

Vince Carey (stvjc@channing.harvard.edu)

#### References

Rosner, B., 2000, *Fundamentals of Biostatistics, 5th Ed.*, pp. 63–65 Duda, R. O., Hart, P. E., Stork, D. G., 2001 *Pattern Classification, 2nd Ed.*, p. 49

#### See Also

rocdemo.sca

#### Examples

```
set.seed(123)
R1 <- rocdemo.sca( rbinom(40,1,.3), rnorm(40), dxrule.sca,
      caseLabel="new case", markerLabel="demo Marker" )
print(AUC(R1))
print(pAUC(R1,.3))
print(pAUCi(R1,.3))
print(ROC(R1,.3))</pre>
```

plot-methods plot method for ROC curves

# Description

plot method for ROC curves

#### Methods

- **x** = **rocc** plots an ROC curve object, with additional parameters available:
  - show.thresh (logical): should marker threshold values be plotted?
  - jit (logical): should plotted points be jittered?
  - add (logical): increment to current plot?
  - line (logical): plot points or lines?
  - **threshCex (numeric):** if showing threshold values, set character expansion in text call to this value
  - **threshYsh (numeric):** if showing threshold values, add this quantity to y coordinate of curve to plot the threshold value (should be negative for printing below point)
  - threshDig (numeric): if showing threshold values, use this as the digits parameter to round to display the threshold
  - ... extra parameters passed to base plot, lines or points as needed

## Examples

```
set.seed(123)
R1 <- rocdemo.sca( rbinom(40,1,.3), rnorm(40), dxrule.sca,
    caseLabel="new case", markerLabel="demo Marker" )
plot(R1, line=TRUE, show.thresh=TRUE, lwd=2, threshDig=2)
R2 <- rocdemo.sca( rbinom(40,1,.3), rnorm(40), dxrule.sca,
    caseLabel="new case", markerLabel="demo Marker" )
plot(R2, line=TRUE, add=TRUE, col="green", lwd=2 )
R3 <- rocdemo.sca( rbinom(40,1,.4), rnorm(40), dxrule.sca,
    caseLabel="new case", markerLabel="demo Marker" )
points(R3, col="red", pch=19)</pre>
```

2

rocc-class

#### Description

object representing ROC curve, typically created using rocdemo.sca

#### **Creating Objects**

```
new('rocc',
sens = ..., # Object of class numeric
spec = ..., # Object of class numeric
rule = ..., # Object of class function
cuts = ..., # Object of class numeric
markerLabel = ..., # Object of class character
caseLabel = ..., # Object of class character
)
```

#### Slots

sens: Object of class "numeric" sensitivity values
spec: Object of class "numeric" specificity values
rule: Object of class "function" rule to classify objects
cuts: Object of class "numeric" thresholds defining curve
markerLabel: Object of class "character" name of measured marker
caseLabel: Object of class "character" name of condition

#### Methods

plot (rocc, missing): a plotting function with some additional parameters

#### Examples

rocdemo.sca function to build objects of class 'rocc'

#### Description

rocdemo.sca – demonstrate 'rocc' class construction using a scalar marker and simple functional rule

#### Usage

#### Arguments

| truth       | true classification of objects. Must take values 0 or 1.                                                                                                                                                        |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| data        | quantitative markers used to classify                                                                                                                                                                           |  |
| rule        | rule: a function with arguments (x, thresh) returning 0 or 1. If no rule is provided or the standard rule dxrule.sca is passed, a faster C-based implementation is used to compute sensitivity and specificity. |  |
| cutpts      | values of thresholds                                                                                                                                                                                            |  |
| markerLabel | textual label describing marker                                                                                                                                                                                 |  |
| caseLabel   | textual label describing classification                                                                                                                                                                         |  |

# Details

dxrule.scaisfunction (x, thresh) ifelse(x > thresh, 1, 0)

The default value of argument cutpts is a point less than min(data), points separating the unique values of data and a point greater than max(data).

#### Value

an object of S4 class rocc

#### Author(s)

Vince Carey (stvjc@channing.harvard.edu)

#### See Also

AUC

#### Examples

```
set.seed(123)
R1 <- rocdemo.sca( rbinom(40,1,.3), rnorm(40), caseLabel="new case", markerLabel="demo Ma
plot(R1, line=TRUE, show.thresh=TRUE)</pre>
```

```
truth <- c(0, 1, 0, 1, 1, 0, 1, 1)
data <- c(2, 3, 4, 4, 5, 6, 7, 8)
R2 <- rocdemo.sca(truth, data, dxrule.sca)
plot(R2, line=TRUE, show.thresh=TRUE)
R3 <- rocdemo.sca(truth, data, function(x, thresh) 1 - dxrule.sca(x, thresh))
if (AUC(R2) + AUC(R3) != 1) stop('Sum of AUCs should be 1.')
#
# more involved
#
set.seed(1234)
x = runif(1000)
w = runif(1000)
z = rbinom(1000, 1, plogis(-2.7+6.2*x + .3*w))</pre>
```

#### trapezint

```
m1 = glm(z~x, fam=binomial)
demorule.glm.clo = function(model) function(w,thresh)
  ifelse(predict(model, newdata=list(x=w), type="response")>thresh, 1, 0)
demorule.glm = demorule.glm.clo(m1)
R4 = rocdemo.sca(z, x, demorule.glm )
plot(R4)
```

trapezint

trapezoidal rule for AUC

# Description

trapezoidal rule for AUC

#### Usage

trapezint(x, y, a, b)

#### Arguments

| Х | x - abscissae                  |
|---|--------------------------------|
| У | y - ordinates                  |
| a | a - lower limit of integration |
| b | b - upper limit of integration |

## Details

uses approx

# Value

estimated AUC

# Examples

```
x <- sort(runif(30))
y <- sin(x)
print(trapezint(x,y,0,1))</pre>
```

# Index

\*Topic methods plot-methods, 2rocc-class, 3 \*Topic models AUC, 1 rocdemo.sca, 3trapezint, 5 .initClasses(rocc-class), 3 AUC, 1 AUCi (AUC), 1 dxrule.sca(rocdemo.sca), 3 lines, rocc-method (plot-methods), 2 pAUC (AUC), 1 pAUCi (AUC), 1 plot, rocc-method (plot-methods), 2 plot-methods, 2points, rocc-method (plot-methods), 2 ROC (AUC), 1 rocc-class, 3 rocdemo.sca, 3

trapezint, 5