
MEDIPS
April 20, 2011

MEDIPS.annotate Funtion to annotate given genomic coordinates.

Description

The function annotates any matrix containing genomic coordinates (region) by a given annotation
file (anno) containing genomic regions of interest. During a typical MEDIPS workflow, this is
of interest for anotating identified differentially methylated regions (DMRs) derived after having
xcecuted the MEDIPS.selectSignificants() or MEDIPS.mergeFrames() function. For annotating
DMRs, you have to provide an annotation file that contains pre-defined ROIs. For each provided
region, the function returns all annotations from the provided annotation file. In case there are
several overlapping annotations, the region is returned several times in sparated rows, each row
associated to one annotation.

Usage

MEDIPS.annotate(region, anno)

Arguments

region a matrix that contains row-wise genomic regions, e.g. DMRs. The columns are:
chromosome, start, stop.

anno the annotation data object contains row-wise the genomic coordinates of anno-
tations. The columns are: chromosome, start, stop, ID

Value

The annotation function returns a matrix where the rows contain the regions from the given frames
object (here DMRs) and the columns are:

chr the chromosome name of the DMR

start the start position of the DMR

stop the stop position of the DMR

annotation the name of the annotation

Author(s)

Joern Dietrich

1



2 MEDIPS.calibrationCurve

Examples

region = list(chr="chr22", start=25170186, stop=25170687)
anno = system.file("extdata", "hg19.chr22.txt", package="MEDIPS")

annotated = MEDIPS.annotate(region=region, anno=anno)

annotated

MEDIPS.calibrationCurve
Function that calculates the calibration curve

Description

Based on the calculated genome vector (MEDIPS.genomeVector) and on the coupling vector (MEDIPS.couplingVector)
of a MEDIPS SET, the function examins the dependency of local MeDIP-Seq signal intensities and
local pattern (e.g. CpG) densities. Calculation of the calibration curve is achieved by first dividing
the total range of coupling factors into several levels. Second, all genomic bins are partitioned into
these levels by considering their associated coupling factors. Finally, for each level of coupling fac-
tors, MEDIPS calculates the mean signal and mean coupling factor of all genomic bins that fall into
this level. The calibration curve represents these averaged signals and coupling factors over the full
range of coupling factors. It indicates the experiment specific dependency between signal intensity
and CpG density. Subsequently, the function performs a linear regression for small coupling factors
of the calibration curve and records the slope and intercept of the resulting linear curve.

Usage

MEDIPS.calibrationCurve(data = NULL)

Arguments

data has to be a MEDIPS SET object

Value

The slots of the stated MEDIPS SET object associated to the calibration curve will be occupied af-
terwards. These are the informations about the mean signals and mean coupling factors representing
the calibration curve and the estimated normalization parameters intercept and slope.

Author(s)

Lukas Chavez

Examples

library(BSgenome.Hsapiens.UCSC.hg19)
file=system.file("extdata", "MeDIP_hESCs_chr22.txt", package="MEDIPS")
CONTROL.SET = MEDIPS.readAlignedSequences(BSgenome="BSgenome.Hsapiens.UCSC.hg19", file=file)
CONTROL.SET = MEDIPS.genomeVector(data = CONTROL.SET, bin_size = 50, extend = 400)



MEDIPS.couplingVector 3

CONTROL.SET = MEDIPS.getPositions(data = CONTROL.SET, pattern = "CG")
CONTROL.SET = MEDIPS.couplingVector(data = CONTROL.SET, fragmentLength = 700, func = "count")

CONTROL.SET = MEDIPS.calibrationCurve(data = CONTROL.SET)

MEDIPS.couplingVector
Calculates the sequence pattern densities for genome wide bins.

Description

Based on the coordinates of the bins of the genome vector included in the stated MEDIPS SET
object, the function calculates the local density of a pre-defined sequence pattern (e.g. CpGs).

Usage

MEDIPS.couplingVector(data = NULL, distFile = "empty", fragmentLength = 700, func = "count")

Arguments

data has to be a MEDIPS SET object

distFile only accessed, if the parameter func=custom. By setting the parameter func
to custom, it is required to specify any custom distance weights file using the
parameter distFile.

fragmentLength
Only sequence pattern (e.G. CpGs) within the range of (bin_position-fragmentLength),
bin_position+fragmentLength] will contribute to the final local coupling factor.
The optimized value for the fragmentLength will reflect the estimated size of
your sonicated DNA fragments.

func There are several possible weghting function. MEDIPS supports setting the
weighting function parameter func to count: simply count the number of CpGs
within the predifined maximal distance to the current bin; linear: the weights for
CpGs decreases in a linear way and end at 0 at the predifined maximal distance to
the current bin; exp: the weights for CpGs decreases in an exponential way and
end at 0 at the predifined maximal distance to the current bin; log: the weights
for CpGs decreases in a logarithmic way and end at 0 at the predifined maximal
distance to the current bin; custom: by setting the parameter to custom, it is
required to specify a custom distance weights file using the parameter distFile.
You can create any of such a distance file by your own and specify it here.
Here, the fragmentLength parameter will be neglected and the maximal distance
within your provided distance file will be the limit.

Value

The slots of the stated MEDIPS SET object associated to the coupling vector will be occupied after-
wards. These are the informations about the selected distance function, possibly about the provided
distance weights file, the fragment length and the calculated coupling factors for the genomic bins.

Author(s)

Lukas Chavez and Joern Dietrich



4 MEDIPS.coverageAnalysis

Examples

library(BSgenome.Hsapiens.UCSC.hg19)
file=system.file("extdata", "MeDIP_hESCs_chr22.txt", package="MEDIPS")
CONTROL.SET = MEDIPS.readAlignedSequences(BSgenome="BSgenome.Hsapiens.UCSC.hg19", file=file)
CONTROL.SET = MEDIPS.genomeVector(data = CONTROL.SET, bin_size = 50, extend = 400)
CONTROL.SET = MEDIPS.getPositions(data = CONTROL.SET, pattern = "CG")

CONTROL.SET = MEDIPS.couplingVector(data = CONTROL.SET, fragmentLength = 700, func = "count")

MEDIPS.coverageAnalysis
The function identifies the number of CpGs (or any other predefined
sequence pattern) covered by the given short reads.

Description

The main idea of the coverage analysis is to test the number of CpGs (or any other predefined
sequence pattern) covered by the given short reads and to have a look at the depth of coverage.
Before you can start the coverage analysis, it is necessary that you have created a MEDIPS SET and
excecuted the MEDIPS.getPositions function. For the coverage analysis, the total set of available
regions is divided into random subsets of equal size where the number of subsets is determined
by the parameter no_iterations. The coverage analysis iteratively selects an increasing number of
subsets and and tests how many CpGs are covered by the available regions. Moreover, it is tested
how many CpGs are covered at least 1x, 2x, 3x, 4x, 5x, and 10x. These levels of coverage depths
can be adjusted by setting the coverages parameter (see below). As the regions are typically of short
length (e.g. 36bp), it is recommended to extend the region length by an extend value.

Usage

MEDIPS.coverageAnalysis(data = NULL, coverages = c(1, 2, 3, 4, 5, 10), no_iterations = 10, no_random_iterations = 1, extend = NULL)

Arguments

data has to be a MEDIPS SET object

coverages default is c(1, 2, 3, 4, 5, 10). The coverages define the depth levels for testing
how often a CpG was covered by the given regions. Just specify any other vector
of coverage depths you would like to test.

no_iterations
defines the number of subsets created from the full set of available regions (de-
fault=10).

no_random_iterations
approaches that randomly select data entries may be processed several times
in order to obtain more stable results. By specifying the no_random_iterations
parameter (default=1) it is possible to run the coverage analysis several times.
The final results returned to the coverage results object are the averaged results
of each random iteration step.

extend extends the region lengths before the coverage analysis is performed.



MEDIPS.CpGenrich 5

Value

matrix Contains the number of covered CpGs in each iteration (rows) and for different
levels of coverages (columns)

maxPos is the total number of sequence patterns (e.g. CpGs) within the refernce genome

pattern is the defined sequence pattern

coveredPos shows the number of covered sequence pattern (e.g. CpGs) using the total set
of available regions for several depths of coverages (columns). The last row
shows the percentage of covered sequence pattern relative to the total number of
available sequence patterns within the reference genome.

Author(s)

Lukas Chavez

Examples

library(BSgenome.Hsapiens.UCSC.hg19)
file=system.file("extdata", "MeDIP_hESCs_chr22.txt", package="MEDIPS")
CONTROL.SET = MEDIPS.readAlignedSequences(BSgenome="BSgenome.Hsapiens.UCSC.hg19", file=file)
CONTROL.SET = MEDIPS.getPositions(data = CONTROL.SET, pattern = "CG")

cr.control = MEDIPS.coverageAnalysis(data = CONTROL.SET, extend = 400, no_iterations = 10)

cr.control

MEDIPS.CpGenrich Calculates the enrichment of provided CpG rich regions compared to
the reference genome.

Description

As a quality check for the enrichment of CpG rich DNA fragments obtained by the immunoprecipi-
tation step of a MeDIP experiment, this function provides the functionality to calculate CpG enrich-
ment values. The main idea is to check, how strong the regions are enriched for CpGs compared to
the reference genome. For this, the function counts the number of Cs, the number of Gs, the num-
ber CpGs, and the total number of bases within the reference genome of the stated MEDIPS SET.
Subsequently, the function calculates the relative frequency of CpGs and the observed/expected
ratio of CpGs present in the reference genome. Additionally, the function calculates the same for
the DNA sequences underlying the given regions. The final enrichment values result by dividing
the relative frequency of CpGs (or the observed/expected value, respectively) of the regions by the
relative frequency of CpGs (or the observed/expected value, respectively) of the reference genome.

Usage

MEDIPS.CpGenrich(data = data, extend = NULL)



6 MEDIPS.exportWIG

Arguments

data has to be a MEDIPS SET object

extend defines the number of bases by which the region will be extended before the
genome vector is calculated. Regions will be extended along the plus or the
minus strand as defined by their provided strand information.

Value

regions.CG the numbe of CpGs within the regions

regions.C the number of Cs within the regions

regions.G the number of Gs within the regions

regions.relH the relative frequency of CpGs within the regions

regions.GoGe the observed/expected ratio of CpGs within the regions

genome.CG the numbe of CpGs within the reference genome

genome.C the number of Cs within the reference genome

genome.G the number of Gs within the reference genome

genome.relH the relative frequency of CpGs within the reference genome

genome.GoGe the observed/expected ratio of CpGs within the reference genome
enrichment.score.relH

regions.relH/genome.relH
enrichment.score.GoGe

regions.GoGe/genome.GoGe

Author(s)

Joern Dietrich

Examples

library(BSgenome.Hsapiens.UCSC.hg19)
file=system.file("extdata", "MeDIP_hESCs_chr22.txt", package="MEDIPS")
CONTROL.SET=MEDIPS.readAlignedSequences(BSgenome="BSgenome.Hsapiens.UCSC.hg19", file=file)

enrich=MEDIPS.CpGenrich(data=CONTROL.SET)

enrich

MEDIPS.exportWIG Exports reads per million, relative methylation score or sequence pat-
tern density into a wiggle file.

Description

The funtion allows for exporting the calculated methylation values (rpm or rms) or sequence pattern
denisties from a MEDIPS SET into a wiggle (WIG) file. The wiggle file contains values for all
genomic bins of the genome vector and can be used for data visualization using appropiate genome
browsers.



MEDIPS.genomeVector 7

Usage

MEDIPS.exportWIG(data = NULL, file = NULL, raw = FALSE, descr = "", pattern.density = FALSE)

Arguments

data has to be a MEDIPS SET object

file degines the name of the exported file

raw if set to TRUE, the reads per million values will be exported. If set to FALSE,
the rms values will be exported (default=FALSE).

descr the exported wiggle file will include a track name and description that will be
visualized by the utilized genome browser. Both, track name and description
will be the same as defined here.

pattern.density
if set to TRUE, the wiggle file will contain the sequence pattern densities of the
coupling vector instead of the methylation values (default=FALSE).

Value

the funtion exports the specified data from the MEDIPS SET into the stated file

Author(s)

Lukas Chavez

Examples

library(BSgenome.Hsapiens.UCSC.hg19)
file=system.file("extdata", "MeDIP_hESCs_chr22.txt", package="MEDIPS")
CONTROL.SET = MEDIPS.readAlignedSequences(BSgenome="BSgenome.Hsapiens.UCSC.hg19", file=file)
CONTROL.SET = MEDIPS.genomeVector(data = CONTROL.SET, bin_size = 50, extend = 400)

MEDIPS.exportWIG(file = "example.output.WIG", data = CONTROL.SET, raw = TRUE, descr = "example")

MEDIPS.genomeVector
Calculates the genome wide short read coverage on a user specified
resolution

Description

Based on the regions included within a previously created MEDIPS SET (see MEDIPS.readAlignedSequiences),
the function calculates the genome wide coverage on a user specified resolution. Each chromosome
inside the MEDIPS SET will be divided into bins of size bin_size and the short read coverage will
be calculated on this resolution. The bin representation of the genome is the ’genome vector’.

Usage

MEDIPS.genomeVector(data = NULL, extend = 400, bin_size = 50)



8 MEDIPS.getPositions

Arguments

data has to be a MEDIPS SET object

extend defines the number of bases by which the region will be extended before the
genome vector is calculated. Regions will be extended along the plus or the
minus strand as defined by their provided strand information.

bin_size defines the size of genome wide bins and therefore, the size of the genome vec-
tor. Read coverages and coupling factors will be calculated for bins separated
by bin_size base pairs.

Value

The slots of the stated MEDIPS SET object associated to the genome vector will be occupied
afterwards. These are the informations about the bin_size, the extend value, the chromosome and
position of the bins, and the number regions within the MEDIPS SET that overlap with the genomic
bin.

Author(s)

Lukas Chavez

Examples

library(BSgenome.Hsapiens.UCSC.hg19)
file=system.file("extdata", "MeDIP_hESCs_chr22.txt", package="MEDIPS")
CONTROL.SET = MEDIPS.readAlignedSequences(BSgenome="BSgenome.Hsapiens.UCSC.hg19", file=file)

CONTROL.SET = MEDIPS.genomeVector(data = CONTROL.SET, bin_size = 50, extend = 400)

MEDIPS.getPositions
Identifies genomic sequence pattern positions within the reference
genome.

Description

The function identifies the genomic positions of the stated sequence pattern (e.g. CpGs). For se-
quence pattern that are reverse complementary, only the positions on the plus strand will be returned.
Otherwise, all genomic positions of the pattern on the plus and minus strand will be returned. The
reference genome is the genome (or only some chromosomes of a genome) that was specified by
excecuting the MEDIPS.readAlignedSequences function.

Usage

MEDIPS.getPositions(data = NULL, pattern = NULL)

Arguments

data has to be a MEDIPS SET object

pattern defines the sequence pattern, e.g. CG for CpGs.



MEDIPS.mergeFrames 9

Value

The slots of the stated MEDIPS SET object associated to the sequence pattern will be occupied
afterwards. These are informations about the pattern itself and their chromosome and genomic
positions.

Author(s)

Joern Dietrich

Examples

library(BSgenome.Hsapiens.UCSC.hg19)
file=system.file("extdata", "MeDIP_hESCs_chr22.txt", package="MEDIPS")
CONTROL.SET = MEDIPS.readAlignedSequences(BSgenome="BSgenome.Hsapiens.UCSC.hg19", file=file)

CONTROL.SET = MEDIPS.getPositions(data = CONTROL.SET, pattern = "CG")

MEDIPS.mergeFrames Merges genomic coordinates of overlapping frames into one super-
sized frame

Description

In case, the MEDIPS.diffMethyl function was excecuted by setting the value of the step parameter
< the value of frame_size the parameter, one may end up with overlapping significant frames. For
these cases it is worthwhile to merge overlapping regions into one supersized frame.

Usage

MEDIPS.mergeFrames(frames = NULL)

Arguments

frames is a matrix received by the MEDIPS.selectSignificants() function.

Value

The remaining distinct frames are represented only by their genomic coordinates within the returned
results table

chromosome the chromosome of the merged frame

start the start position of the merged frame

stop the stop position of the merged frame

The results table does not contain any merged rpm, rms, variance, p.value, etc. values.

Author(s)

Lukas Chavez



10 MEDIPS.methylProfiling

Examples

regions=as.data.frame(list(chr=c("chr22", "chr22"), start=c(1000, 1250), stop=c(1500,1750)))
regions.merged=MEDIPS.mergeFrames(regions)

regions.merged

MEDIPS.methylProfiling
Funtion calculates mean methylation values (rpm, rms) and ams val-
ues, ratios, variances, and pvalues comparing two MEDIPS SETs for
user supplied regions of interests (ROIs) or genome wide frames.

Description

In order to compare two different conditions, first you have to create and process two MEDIPS
SETs. For the identification of DMRs, MEDIPS provides two alternative approaches. First, you can
specify pre-defined regions of interest (ROIs). Second, MEDIPS offers the possibility to calculate
differential methylation for genome wide frames. The function calculates summarized methylation
values for the defined ROIs. Here, these are the mean values for both provided MEDIPS SETs as
well as the ratio of means. Moreover, for each ROI, MEDIPS calculates p-values by comparing the
set of rpm values (or rms values, respectively) within the ROI of the one MEDIPS SET against the
set of rpm values (or rms values, respectively) within the ROI of the second MEDIPS SET using
R’s wilcox.test and t.test functions. Additionally, it is recommended (but not necessary) to provide
background data from an INPUT experiment (that is sequencing of none-enriched DNA fragments).
By providing an INPUT data set, MEDIPS additionally returns mean INPUT rpm values for the
specified ROIs. Please note, the function takes a long processing time when called for genome wide
short windows (up to days).

Usage

MEDIPS.methylProfiling(data1 = NULL, data2 = NULL, input = NULL, ROI_file = NULL, frame_size = NULL, math = "mean", step = NULL, select = 2, chr = NULL, transf=T)

Arguments

data1 has to be a MEDIPS SET object (the control data)
data2 has to be a MEDIPS SET object (the treatment data)
input has to be a MEDIPS SET object (the input data)
ROI_file instead of processing genome wide frames using the parameters frame_size and

step, here you can provide a file containing predefined ROIs.
frame_size Besides summarizing methylation values for pre-defined ROIs, MEDIPS allows

for calculating mean methylation values along the full chromosomes. For this,
you have to specify a desired frame size here.

math default=mean; Here, you can specify other functions available in R for sumariz-
ing values like median or sum.

step The step parameter defines the number of bases by which the frames are shifted
along the chromosome. If you e.g. set the frame_size parameter to 500 and
the step parameter to 250, then MEDIPS calculates mean methylation values for
overlapping 500bp windows, where the size of the overlap will be 250bp for all
neighbouring windows.



MEDIPS.methylProfiling 11

select can be either 1 or 2. If set to 1, the variance, ratio, and p-values will be calculated
based on the rpm values; if set to 2, the rms values will be considered instead.

chr only the specified chromosome will be evaluated (e.g. chr1)

transf If set to TRUE, MEDIPS transforms the mean rms and ams values into log2
scale and subsequently transforms their resulting data range into the consistent
interval $[0,1000]$ before finally stored.

Value

chr the chromosome of the ROI

start the start position of the ROI

stop the stop position of the ROI

length the number of genomic bins included in the ROI

coupling the mean coupling factor of the ROI

input the mean reads per million value of the INPUT MEDIPS SET at input (if pro-
vided)

rpm_A the mean reads per million value for the MEDIPS SET at data1

rpm_B the mean reads per million value for the MEDIPS SET at data2

rms_A the mean relative mathylation score for the MEDIPS SET at data1

rms_B the mean relative methylation score for the MEDIPS SET at data2

ams_A the mean absolute mathylation score for the MEDIPS SET at data1. The ams
scores are derived by dividing the mean rms value of the ROI by the mean cou-
pling factor of the ROI before the log2 and interval transformations are per-
formed.

ams_B the mean absolute mathylation score for the MEDIPS SET at data2. The ams
scores are derived by dividing the mean rms value of the ROI by the mean cou-
pling factor of the ROI before the log2 and interval transformations are per-
formed.

var_A the variance of the rpm or rms values (please see the parameter select) of the
MEDIPS SET at data1

var_B the variance of the rpm or rms values (please see the parameter select) of the
MEDIPS SET at data2

var_co_A the variance coefficient of the rpm or rms values (please see the parameter select)
of the MEDIPS SET at data1

var_co_B the variance coefficient of the rpm or rms values (please see the parameter select)
of the MEDIPS SET at data2

ratio rpm_A/rpm_B or rms_A/rms_B, respectively (please see the parameter select)
pvalue.wilcox

the p.value returned by R’s wilcox.test function for comparing the rpm values
(or rms values, respectively; please see the parameter select) of the MEDIPS
SET at data1 and of the MEDIPS SET at data2

pvalue.ttest the p.value returned by R’s t.test function for comparing the rpm values (or rms
values, respectively; please see the parameter select) of the MEDIPS SET at
data1 and of the MEDIPS SET at data2

Author(s)

Joern Dietrich



12 MEDIPS.normalize

Examples

library(BSgenome.Hsapiens.UCSC.hg19)
file=system.file("extdata", "MeDIP_hESCs_chr22.txt", package="MEDIPS")
CONTROL.SET = MEDIPS.readAlignedSequences(BSgenome="BSgenome.Hsapiens.UCSC.hg19", file=file)
CONTROL.SET = MEDIPS.genomeVector(data = CONTROL.SET, bin_size = 50, extend = 400)
CONTROL.SET = MEDIPS.getPositions(data = CONTROL.SET, pattern = "CG")
CONTROL.SET = MEDIPS.couplingVector(data = CONTROL.SET, fragmentLength = 700, func = "count")
CONTROL.SET = MEDIPS.calibrationCurve(data = CONTROL.SET)
CONTROL.SET = MEDIPS.normalize(data = CONTROL.SET)
ROI_file = system.file("extdata", "hg19.chr22.txt", package="MEDIPS")

promoter = MEDIPS.methylProfiling(data1 = CONTROL.SET, ROI_file = ROI_file, math = mean, select = 2)

MEDIPS.normalize Function that normalizes raw signals by local sequence pattern (e.g.
CpG) densities.

Description

The normalization function accesses the pre-calculated slope and intercept values derived from the
MEDIPS.calibrationCurve function in order to weight the raw signals. The relative methlyation
score (rms) for the genomic bins is then defined by rms = x\((y-intercept)/slope), where x is the raw
signal and y is the coupling factor of a genomic bin. Based on the total number of regions within
the MEDIPS SET, the rms values will be transformed into a reads per million format and afterwards
transformed into the log2 scale. In order to make the rms values visualizable by common genome
browsers, MEDIPS transforms its resulting data range into the consistent interval [0, 1000] before
finally stored.

Usage

MEDIPS.normalize(data = NULL)

Arguments

data has to be a MEDIPS SET object

Value

The slot of the stated MEDIPS SET object associated to the rms values will be occupied afterwards.

Author(s)

Lukas Chavez

Examples

library(BSgenome.Hsapiens.UCSC.hg19)
file=system.file("extdata", "MeDIP_hESCs_chr22.txt", package="MEDIPS")
CONTROL.SET = MEDIPS.readAlignedSequences(BSgenome="BSgenome.Hsapiens.UCSC.hg19", file=file)
CONTROL.SET = MEDIPS.genomeVector(data = CONTROL.SET, bin_size = 50, extend = 400)
CONTROL.SET = MEDIPS.getPositions(data = CONTROL.SET, pattern = "CG")



MEDIPS.plotCalibrationPlot 13

CONTROL.SET = MEDIPS.couplingVector(data = CONTROL.SET, fragmentLength = 700, func = "count")
CONTROL.SET = MEDIPS.calibrationCurve(data = CONTROL.SET)

CONTROL.SET = MEDIPS.normalize(data = CONTROL.SET)

MEDIPS-package MeDIP-Seq data analysis

Description

MEDIPS was developed for analyzing data derived from methylated DNA immunoprecipitation
(MeDIP) experiments followed by sequencing (MeDIP-Seq). Nevertheless, functionalities like
the quality controls may be applied to other types of sequencing data (e.g. ChIP-Seq). MEDIPS
adresses several aspects in the context of MeDIP-Seq data analysis.

Details

Package: MEDIPS
Type: Package
Version: 1.0.0
Date: 2010-09-28
License: GPL (>=2)
LazyLoad: yes
Depends: R (>= 2.12.0), BSgenome

Author(s)

Lukas Chavez, Joern Dietrich

Maintainer: Lukas Chavez <chavez@molgen.mpg.de>

References

Chavez et al., 2010

MEDIPS.plotCalibrationPlot
Plots the results of the MEDIPS.calibrationCurve function.

Description

Visualizes the dependency of raw MeDIP-Seq signals and CpG densities together with the results
of the calcibration curve calculation.

Usage

MEDIPS.plotCalibrationPlot(data=NULL, xrange=NULL, linearFit=FALSE, plot_chr="all", rpm=F)



14 MEDIPS.plotCoverage

Arguments

data has to be a MEDIPS SET object

xrange The mean signal range of the calibration curve typically falls into a low signal
range. By setting the xrange parameter to e.g. 50, the calibration plot will only
plot genomic bins associated with signals <=50. Therefore, the effect of an
increased CpG density to an increased signal can be better visualized, especially
if the data contains genomic bins with high signals.

rpm can be either TRUE or FALSE. If set to TRUE, the signals will be transformed
into reads per million (rpm) before plotted. The coupling values remain un-
touched.

linearFit When the parameter linearFit is set to TRUE, the plot contains the calculated
linear curve that represents the dependency between signals and CpG densities.

plot_chr default="all". Please don’t forget to call a e.g. png("file.png") function before
calling the plot command using "all" because R might not be able to plot the
full amount of data in reasonable time. Alternatively, you can specify a selected
chromosome (e.g. chr1). Here, the plot_chr parameter only affects the plot and
does not affect the MEDIPS SET.

Value

The calibration plot will be visualized.

Author(s)

Lukas Chavez

Examples

library(BSgenome.Hsapiens.UCSC.hg19)
file=system.file("extdata", "MeDIP_hESCs_chr22.txt", package="MEDIPS")
CONTROL.SET = MEDIPS.readAlignedSequences(BSgenome="BSgenome.Hsapiens.UCSC.hg19", file=file)
CONTROL.SET = MEDIPS.genomeVector(data = CONTROL.SET, bin_size = 50, extend = 400)
CONTROL.SET = MEDIPS.getPositions(data = CONTROL.SET, pattern = "CG")
CONTROL.SET = MEDIPS.couplingVector(data = CONTROL.SET, fragmentLength = 700, func = "count")
CONTROL.SET = MEDIPS.calibrationCurve(data = CONTROL.SET)

MEDIPS.plotCalibrationPlot(data = CONTROL.SET, linearFit = TRUE, plot_chr = "chr22")

MEDIPS.plotCoverage
Function plots the results of the MEDIPS.coverageAnalysis function.

Description

The results of the coverage analysis will be visualized by the function.

Usage

MEDIPS.plotCoverage(coverageObj = NULL)



MEDIPS.plotSaturation 15

Arguments

coverageObj The coverage results object returned by the MEDIPS.coverageAnalysis function

Value

The coverage plot will be visualized.

Author(s)

Lukas Chavez

Examples

library(BSgenome.Hsapiens.UCSC.hg19)
file=system.file("extdata", "MeDIP_hESCs_chr22.txt", package="MEDIPS")
CONTROL.SET = MEDIPS.readAlignedSequences(BSgenome="BSgenome.Hsapiens.UCSC.hg19", file=file)
CONTROL.SET = MEDIPS.getPositions(data = CONTROL.SET, pattern = "CG")
cr.control = MEDIPS.coverageAnalysis(data = CONTROL.SET, extend = 400, no_iterations = 10)

MEDIPS.plotCoverage(cr.control)

MEDIPS.plotSaturation
Function plots the results of the MEDIPS.saturationAnalysis function.

Description

The results of the saturation analysis will be visualized by the function.

Usage

MEDIPS.plotSaturation(saturationObj = NULL)

Arguments

saturationObj
The saturation results object returned by the MEDIPS.saturationAnalysis func-
tion

Value

The coverage plot will be visualized.

Author(s)

Lukas Chavez



16 MEDIPS.readAlignedSequences

Examples

library(BSgenome.Hsapiens.UCSC.hg19)
file=system.file("extdata", "MeDIP_hESCs_chr22.txt", package="MEDIPS")
CONTROL.SET = MEDIPS.readAlignedSequences(BSgenome="BSgenome.Hsapiens.UCSC.hg19", file=file)
sr.control = MEDIPS.saturationAnalysis(data = CONTROL.SET, bin_size = 50, extend = 400, no_iterations = 10, no_random_iterations = 1)

MEDIPS.plotSaturation(sr.control)

MEDIPS.readAlignedSequences
Creates a MEDIPS SET by reading a suitable input file

Description

Reads the input file and creates a MEDIPS SET. After reading the input file, the MEDIPS SET
contains the information about the input regions, like the input file name, the dependent organism,
the chromosomes included in the input file, the length of the included chromosomes (automatically
loaded), the number of regions, and the start, stop and strand informations of the regions. All further
slots, for example for the weighting parameters and normalized data are still empty and will be filled
during the workflow.

Usage

MEDIPS.readAlignedSequences(file = NULL, BSgenome = NULL, numrows = -1)

Arguments

file Path and file name of the input data

BSgenome The reference genome name as defined by BSgenome

numrows The number of short reads (number of rows) within the input file

Value

An object of class MEDIPSset is returned where the region dependent informations are stored in the
according slots. These are informations about the input file, the reference genome, the total number
of provided regions, the chromosomes which are covered by the regions, the total chromosome
lengths, and the start and stop positions and strand informations of the regions.

Author(s)

Lukas Chavez

Examples

library(BSgenome.Hsapiens.UCSC.hg19)
file=system.file("extdata", "MeDIP_hESCs_chr22.txt", package="MEDIPS")

CONTROL.SET = MEDIPS.readAlignedSequences(BSgenome="BSgenome.Hsapiens.UCSC.hg19", file=file)



MEDIPS.saturationAnalysis 17

MEDIPS.saturationAnalysis
Function calculates the saturation/reproducibility of the provided
MeDIP-Seq data.

Description

The saturation analysis addresses the question, whether the number of input regions is sufficient to
generate a saturated and reproducible methylation profile of the reference genome. The main idea
is that an insufficent number of short reads will not result in a saturated methylation profile. Only
if there is a sufficient number of short reads, the resulting genome wide methylation profile will be
reproducible by another independent set of a similar number of short reads.

Usage

MEDIPS.saturationAnalysis(data = NULL, no_iterations = 10, no_random_iterations = 1, empty_bins = TRUE, rank = FALSE, extend = 400, bin_size = NULL)

Arguments

data has to be a MEDIPS SET object
no_iterations

defines the number of subsets created from the full sets of available regions
(default=10)

no_random_iterations
approaches that randomly select data entries may be processed several times
in order to obtain more stable results. By specifying the no_random_iterations
parameter (default=1) it is possible to run the saturation analysis several times.
The final results returned to the saturation results object are the averaged results
of each random iteration step.

empty_bins can be either TRUE or FALSE (default TRUE). This parameter effects the way
of calculating correlations between the resulting genome vectors. A genome
vector consists of concatenated vectors for each included chromosome. The
size of the vectors is defined by the bin_size parameter. If there occur genomic
bins which contain no overlapping regions, neither from the subsets of A nor
from the subsets of B, these bins will be neglected when the paramter is set to
FALSE.

rank can be either TRUE or FALSE (default FALSE). This parameter also effects
the way of calculating correlations between the resulting genome vectors. If
rank is set to TRUE, the correlation will be calculated for the ranks of the bins
instead of considering the counts. Setting this parameter to TRUE is a more
robust approach that reduces the effect of possible occuring outliers (these are
bins with a very high number of overlapping regions) to the correlation.

extend defines the number of bases by which the region will be extended before the
genome vector is calculated. Regions will be extended along the plus or the
minus strand as defined by their provided strand information.

bin_size defines the size of genome wide bins and therefore, the size of the genome vec-
tor. Read coverages will be calculated for bins separated by bin_size base pairs.



18 MEDIPS.selectSignificants

Value

distinctSets Contains the results of each iteration step (row-wise) of the saturation analysis.
The first column is the number of considered regions in each set, the second
column is the resulting pearson correlation coefficient when comparing the two
independent genome vectors.

estimation Contains the results of each iteration step (row-wise) of the estimated saturation
analysis. The first column is the number of considered regions in each set, the
second column is the resulting pearson correlation coefficient when comparing
the two independent genome vectors.

distinctSets the total number of available regions
maxEstCor contains the best pearson correlation (second column) obtained by considering

the artifically doubled set of reads (first column)
distinctSets contains the best pearson correlation (second column) obtained by considering

the total set of reads (first column)

Author(s)

Lukas Chavez

Examples

library(BSgenome.Hsapiens.UCSC.hg19)
file=system.file("extdata", "MeDIP_hESCs_chr22.txt", package="MEDIPS")
CONTROL.SET = MEDIPS.readAlignedSequences(BSgenome="BSgenome.Hsapiens.UCSC.hg19", file=file)

sr.control = MEDIPS.saturationAnalysis(data = CONTROL.SET, bin_size = 50, extend = 400, no_iterations = 10, no_random_iterations = 1)

sr.control

MEDIPS.selectSignificants
Selects candidate ROIs that show significant differential methylation
between two MEDIPS SETs.

Description

Based on the results matrix returned from the MEDIPS.diffMethyl function, the function selects
candidate ROIs that show significant differential methylation between the CONTROL.SET and the
TREAT.SET in consideration of the background data included in the INPUT.SET. Filtering for
significant frames proceeds in the following order: ROIs that do not contain any data either in the
CONTROL.SET nor in the TREAT.SET are neglected first; ROIs associated to p-values > p.value
are neglected; ROIs with a CONTROL/TREATMENT ratio < up (or > down, respectively) are
neglected; From the INPUT mean rpm distribution, a mean rpm threshold was defined by the quant
parameter and all ROIs that have a mean rpm value within the CONTROL.SET (or TREAT.SET,
respectively) smaller than the estimated background rpm threshold are discarded; The last filter is
again based on the INPUT data. While the latter filter estimates a minimum rpm signal for the
CONTROL.SET (or TREAT.SET, respectively) from the total background distribution, we now
define that the rpm value from the CONTROL SET (or TREAT.SET, respectively) of a ROI exceeds
the local background data of the INPUT.SET by the parameter up. This is, because MeDIP-Seq
background data varies along the chromosomes due to varying DNA availability.



MEDIPS.selectSignificants 19

Usage

MEDIPS.selectSignificants(frames = NULL, input = T, control = T, up = 1.333333, down = 0.75, p.value = 0.01,quant = 0.9)

Arguments

frames specifies the results table derived from the MEDIPS.diffMethyl

input default=T; Setting the parameter to TRUE requires that the results table includes
a column for summarized rpm values of an INPUT SET. In case, there is no
INPUT data available, the input parameter has to be set to a rpm value that will
be used as threshold during the subsequent analysis. How to estimate such a
threshold without background data is not yet solved by MEDIPS.

control can be either TRUE or FALSE; MEDIPS allows for selecting frames that are
higher methylated in the CONTROL SET compared to the TREAT SET and
vice versa but both approaches have to be perfomed in two independent runs. By
setting control=T, MEDIPS selects genomic regions, where the CONTROL SET
is higher methylated. By setting control=F, MEDIPS selects genomic regions,
where the TREAT SET is higher methylated.

up default=1.333333; defines the lower threshold for the ratio CONTROL/TREAT
as well as for the lower ratio for CONTROL/INPUT (if control=T) or TREAT-
MENT/INPUT (if control=F), respectively.

down default=0.75; defines the upper threshold for the ratio: CONTROL/TREATMENT
(only if control=F).

p.value default=0.01; defines the threshold for the p-values. One of the p-values derived
from the wilcox.test or t.test function has to be <= p.value.

quant default=0.9; from the distribution of all summarized INPUT rpm values, MEDIPS
calculates the rpm value that represents the quant quantile of the whole INPUT
distribution.

Value

chr the chromosome of the ROI

start the start position of the ROI

stop the stop position of the ROI

length the number of genomic bins included in the ROI

coupling the mean coupling factor of the ROI

input the mean reads per million value of the INPUT MEDIPS SET at input (if pro-
vided)

rpm_A the mean reads per million value for the MEDIPS SET at data1

rpm_B the mean reads per million value for the MEDIPS SET at data2

rms_A the mean relative mathylation score for the MEDIPS SET at data1

rms_B the mean relative methylation score for the MEDIPS SET at data2

ams_A the mean absolute mathylation score for the MEDIPS SET at data1. The ams
scores are derived by dividing the mean rms value of the ROI by the mean cou-
pling factor of the ROI before the log2 and interval transformations are per-
formed.



20 MEDIPS.selectSignificants

ams_B the mean absolute mathylation score for the MEDIPS SET at data2. The ams
scores are derived by dividing the mean rms value of the ROI by the mean cou-
pling factor of the ROI before the log2 and interval transformations are per-
formed.

var_A the variance of the rpm or rms values (please see the parameter select) of the
MEDIPS SET at data1

var_B the variance of the rpm or rms values (please see the parameter select) of the
MEDIPS SET at data2

var_co_A the variance coefficient of the rpm or rms values (please see the parameter select)
of the MEDIPS SET at data1

var_co_B the variance coefficient of the rpm or rms values (please see the parameter select)
of the MEDIPS SET at data2

ratio rpm_A/rpm_B or rms_A/rms_B, respectively (please see the parameter select)
pvalue.wilcox

the p.value returned by R’s wilcox.test function for comparing the rpm values
(or rms values, respectively; please see the parameter select) of the MEDIPS
SET at data1 and of the MEDIPS SET at data2

pvalue.ttest the p.value returned by R’s t.test function for comparing the rpm values (or rms
values, respectively; please see the parameter select) of the MEDIPS SET at
data1 and of the MEDIPS SET at data2

Author(s)

Lukas Chavez

Examples

library(BSgenome.Hsapiens.UCSC.hg19)
file=system.file("extdata", "MeDIP_hESCs_chr22.txt", package="MEDIPS")
CONTROL.SET = MEDIPS.readAlignedSequences(BSgenome="BSgenome.Hsapiens.UCSC.hg19", file=file)
CONTROL.SET = MEDIPS.genomeVector(data = CONTROL.SET, bin_size = 50, extend = 400)
CONTROL.SET = MEDIPS.getPositions(data = CONTROL.SET, pattern = "CG")
CONTROL.SET = MEDIPS.couplingVector(data = CONTROL.SET, fragmentLength = 700, func = "count")
CONTROL.SET = MEDIPS.calibrationCurve(data = CONTROL.SET)
CONTROL.SET = MEDIPS.normalize(data = CONTROL.SET)

file=system.file("extdata", "MeDIP_DE_chr22.txt", package="MEDIPS")
TREAT.SET = MEDIPS.readAlignedSequences(BSgenome = "BSgenome.Hsapiens.UCSC.hg19", file = file)
TREAT.SET = MEDIPS.genomeVector(data = TREAT.SET, bin_size = 50, extend = 400)
TREAT.SET = MEDIPS.getPositions(data = TREAT.SET, pattern = "CG")
TREAT.SET = MEDIPS.couplingVector(data = TREAT.SET, fragmentLength = 700, func = "count")
TREAT.SET = MEDIPS.calibrationCurve(data = TREAT.SET)
TREAT.SET = MEDIPS.normalize(data = TREAT.SET)

file=system.file("extdata", "Input_StemCells_chr22.txt", package="MEDIPS")
INPUT.SET = MEDIPS.readAlignedSequences(BSgenome = "BSgenome.Hsapiens.UCSC.hg19", file = file)
INPUT.SET = MEDIPS.genomeVector(data = INPUT.SET, bin_size = 50, extend = 400)

diff.methyl = MEDIPS.methylProfiling(data1 = CONTROL.SET, data2= TREAT.SET, input=INPUT.SET, chr="chr22", frame_size=1000, select=1)

diff.methyl.sig=MEDIPS.selectSignificants(diff.methyl)



MEDIPSset-class 21

MEDIPSset-class Class "MEDIPSset"

Description

This class is used in the MEDIPS library to store and extract all the MEDIPS objects and inorma-
tions generated during the workflow

Objects from the Class

Objects can be created by calls of the form new("MEDIPSset", ...). Objects of the class
contain the information about the provided regions, their chromosome, start, stop and strand infor-
mations, the raw and normalized signals, the sequence pattern positions and informations about all
specified parameters. The MEDIPS SET will be created by reading the input regions file using the
MEDIPS.readAlignedSequences function and all further slots will be filled during the workflow.

Slots

regions_chr: Object of class "character" : the chromosomes of the regions

regions_start: Object of class "numeric" : the start positions of the regions

regions_stop: Object of class "numeric" : the stop positions of the regions

regions_strand: Object of class "character" : the strand informations of the regions

number_regions: Object of class "numeric" : the total number of included regions

pattern_chr: Object of class "character" : the chromosomes of the sequence pattern

pattern_pos: Object of class "numeric" : the positions of the sequence pattern

number_pattern: Object of class "numeric" : the total number of sequence pattern

genome_chr: Object of class "character" : the chromosome of the genomic bins

genome_pos: Object of class "numeric" : the positions of the genomic bins

genome_CF: Object of class "numeric" : the coupling factor at the genomic bins

genome_raw: Object of class "numeric" : the raw MeDIP-Seq signals at the genomic bins

genome_norm: Object of class "numeric" : the rms values at the genomic bins

genome_name: Object of class "character" : the refernce genome

bin_size: Object of class "numeric" : the bin size for the genome vector

extend: Object of class "numeric" : the number of bases by which the regions are extended

fragmentLength: Object of class "numeric" : the estimated fragment length of the DNA
fragments

sample_name: Object of class "character" : the name of the input file

chr_lengths: Object of class "numeric" : the lengths of the chromosomes included within
the MEDIPS SET

chr_names: Object of class "character" : the names of the chromosomes included within
the MEDIPS SET

seq_pattern: Object of class "character" : the sequence pattern (e.g. CpG)

distFunction: Object of class "character" : the distance function specified for calculating
the coupling factors



22 MEDIPSset-class

distFile: Object of class "character" : the file containing the custom distance weights, if
provided

calcurve_mean_signals: Object of class "numeric" : the mean signals of the calibration
curve

calcurve_mean_coupling: Object of class "numeric" : the mean coupling factors of the
calibration curve

calcurve_var: Object of class "numeric" : the signal variance of the levels of the calibration
curve

intercept: Object of class "numeric" : the intercept value calculated from the calibration
curve

slope: Object of class "numeric" : the slope value calculated from the calibration curve

cali_chr: Object of class "character" : the chromosomes used for calibration

Methods

bin_size signature(object = "MEDIPSset"): extracts the bins size from the bin_size
slot

calcurve_mean_coupling signature(object = "MEDIPSset"): extracts the mean cou-
pling factors of the calibration curve

calcurve_mean_signals signature(object = "MEDIPSset"): extracts the mean signals
of the calibration curve

calcurve_var signature(object = "MEDIPSset"): extracts the variances of the calibra-
tion curve

cali_chr signature(object = "MEDIPSset"): extracts the chromosome used for calcu-
lating the calibration curve

chr_lengths signature(object = "MEDIPSset"): extracts the length of the chromo-
somes included within the MEDIPS SET

chr_names signature(object = "MEDIPSset"): extracts the names of the chromosomes
included within the MEDIPS SET

distFile signature(object = "MEDIPSset"): extracts the name of file containing the
custom distance weights, if provided

distFunction signature(object = "MEDIPSset"): extracts the distance function speci-
fied for calculating the coupling factors

extend signature(object = "MEDIPSset"): extracts the number of bases by which the
regions are extended

fragmentLength signature(object = "MEDIPSset"): extracts the estimated fragment
length of the DNA fragments

genome_CF signature(object = "MEDIPSset"): extracts the coupling factor at the ge-
nomic bins

genome_chr signature(object = "MEDIPSset"): extracts the chromosome of the ge-
nomic bins

genome_name signature(object = "MEDIPSset"): extracts the refernce genome

genome_norm signature(object = "MEDIPSset"): extracts the rms values at the ge-
nomic bins

genome_pos signature(object = "MEDIPSset"): extracts the positions of the genomic
bins



MEDIPSset-class 23

genome_raw signature(object = "MEDIPSset"): extracts the raw MeDIP-Seq signals
at the genomic bins

intercept signature(object = "MEDIPSset"): extracts the intercept value calculated
from the calibration curve

number_pattern signature(object = "MEDIPSset"): extracts the total number of se-
quence pattern

number_regions signature(object = "MEDIPSset"): extracts the total number of in-
cluded regions

pattern_chr signature(object = "MEDIPSset"): extracts the chromosomes of the se-
quence pattern

pattern_pos signature(object = "MEDIPSset"): extracts the positions of the sequence
pattern

regions_chr signature(object = "MEDIPSset"): extracts the chromosomes of the re-
gions

regions_start signature(object = "MEDIPSset"): extracts the start positions of the re-
gions

regions_stop signature(object = "MEDIPSset"): extracts the stop positions of the re-
gions

regions_strand signature(object = "MEDIPSset"): extracts the strand informations of
the regions

sample_name signature(object = "MEDIPSset"): extracts the name of the input file

seq_pattern signature(object = "MEDIPSset"): extracts the sequence pattern (e.g. CpG)

show signature(object = "MEDIPSset"): prints a summary of the object content

slope signature(object = "MEDIPSset"): extracts the slope value calculated from the
calibration curve

MEDIPS.distributeReads signature(object = "MEDIPSset"): help function for dis-
tributing the reads over the genome vector

MEDIPS.transform signature(object = "MEDIPSset"): help function for transform-
ing ams values

Author(s)

Lukas Chavez, Joern Dietrich

Examples

showClass("MEDIPSset")



Index

∗Topic classes
MEDIPSset-class, 21

∗Topic package
MEDIPS-package, 13

bin_size (MEDIPSset-class), 21
bin_size,MEDIPSset-method

(MEDIPSset-class), 21

calcurve_mean_coupling
(MEDIPSset-class), 21

calcurve_mean_coupling,MEDIPSset-method
(MEDIPSset-class), 21

calcurve_mean_signals
(MEDIPSset-class), 21

calcurve_mean_signals,MEDIPSset-method
(MEDIPSset-class), 21

calcurve_var (MEDIPSset-class), 21
calcurve_var,MEDIPSset-method

(MEDIPSset-class), 21
cali_chr (MEDIPSset-class), 21
cali_chr,MEDIPSset-method

(MEDIPSset-class), 21
chr_lengths (MEDIPSset-class), 21
chr_lengths,MEDIPSset-method

(MEDIPSset-class), 21
chr_names (MEDIPSset-class), 21
chr_names,MEDIPSset-method

(MEDIPSset-class), 21

distFile (MEDIPSset-class), 21
distFile,MEDIPSset-method

(MEDIPSset-class), 21
distFunction (MEDIPSset-class), 21
distFunction,MEDIPSset-method

(MEDIPSset-class), 21

extend (MEDIPSset-class), 21
extend,MEDIPSset-method

(MEDIPSset-class), 21

fragmentLength (MEDIPSset-class),
21

fragmentLength,MEDIPSset-method
(MEDIPSset-class), 21

genome_CF (MEDIPSset-class), 21
genome_CF,MEDIPSset-method

(MEDIPSset-class), 21
genome_chr (MEDIPSset-class), 21
genome_chr,MEDIPSset-method

(MEDIPSset-class), 21
genome_name (MEDIPSset-class), 21
genome_name,MEDIPSset-method

(MEDIPSset-class), 21
genome_norm (MEDIPSset-class), 21
genome_norm,MEDIPSset-method

(MEDIPSset-class), 21
genome_pos (MEDIPSset-class), 21
genome_pos,MEDIPSset-method

(MEDIPSset-class), 21
genome_raw (MEDIPSset-class), 21
genome_raw,MEDIPSset-method

(MEDIPSset-class), 21

intercept (MEDIPSset-class), 21
intercept,MEDIPSset-method

(MEDIPSset-class), 21

MEDIPS (MEDIPS-package), 13
MEDIPS-package, 13
MEDIPS.annotate, 1
MEDIPS.calibrationCurve, 2
MEDIPS.couplingVector, 3
MEDIPS.coverageAnalysis, 4
MEDIPS.CpGenrich, 5
MEDIPS.distributeReads

(MEDIPSset-class), 21
MEDIPS.exportWIG, 6
MEDIPS.genomeVector, 7
MEDIPS.getPositions, 8
MEDIPS.mergeFrames, 9
MEDIPS.methylProfiling, 10
MEDIPS.normalize, 12
MEDIPS.plotCalibrationPlot, 13
MEDIPS.plotCoverage, 14
MEDIPS.plotSaturation, 15
MEDIPS.readAlignedSequences, 16
MEDIPS.saturationAnalysis, 17
MEDIPS.selectSignificants, 18

24



INDEX 25

MEDIPS.transform
(MEDIPSset-class), 21

MEDIPSset-class, 21

number_pattern (MEDIPSset-class),
21

number_pattern,MEDIPSset-method
(MEDIPSset-class), 21

number_regions (MEDIPSset-class),
21

number_regions,MEDIPSset-method
(MEDIPSset-class), 21

pattern_chr (MEDIPSset-class), 21
pattern_chr,MEDIPSset-method

(MEDIPSset-class), 21
pattern_pos (MEDIPSset-class), 21
pattern_pos,MEDIPSset-method

(MEDIPSset-class), 21

regions_chr (MEDIPSset-class), 21
regions_chr,MEDIPSset-method

(MEDIPSset-class), 21
regions_start (MEDIPSset-class),

21
regions_start,MEDIPSset-method

(MEDIPSset-class), 21
regions_stop (MEDIPSset-class), 21
regions_stop,MEDIPSset-method

(MEDIPSset-class), 21
regions_strand (MEDIPSset-class),

21
regions_strand,MEDIPSset-method

(MEDIPSset-class), 21

sample_name (MEDIPSset-class), 21
sample_name,MEDIPSset-method

(MEDIPSset-class), 21
seq_pattern (MEDIPSset-class), 21
seq_pattern,MEDIPSset-method

(MEDIPSset-class), 21
show (MEDIPSset-class), 21
show,MEDIPSset-method

(MEDIPSset-class), 21
slope (MEDIPSset-class), 21
slope,MEDIPSset-method

(MEDIPSset-class), 21


	MEDIPS.annotate
	MEDIPS.calibrationCurve
	MEDIPS.couplingVector
	MEDIPS.coverageAnalysis
	MEDIPS.CpGenrich
	MEDIPS.exportWIG
	MEDIPS.genomeVector
	MEDIPS.getPositions
	MEDIPS.mergeFrames
	MEDIPS.methylProfiling
	MEDIPS.normalize
	MEDIPS-package
	MEDIPS.plotCalibrationPlot
	MEDIPS.plotCoverage
	MEDIPS.plotSaturation
	MEDIPS.readAlignedSequences
	MEDIPS.saturationAnalysis
	MEDIPS.selectSignificants
	MEDIPSset-class
	Index

