
GenomicRanges
April 20, 2011

cigar-utils CIGAR utility functions

Description

Utility functions for low-level CIGAR manipulation.

Usage

cigarOpTable(cigar)

cigarToQWidth(cigar, before.hard.clipping=FALSE)
cigarToWidth(cigar)

cigarQNarrow(cigar, start=NA, end=NA, width=NA)
cigarNarrow(cigar, start=NA, end=NA, width=NA)

cigarToIRanges(cigar, drop.D.ranges=FALSE, merge.ranges=TRUE)
cigarToIRangesListByAlignment(cigar, pos, flag=NULL, drop.D.ranges=FALSE)
cigarToIRangesListByRName(cigar, rname, pos, flag=NULL, drop.D.ranges=FALSE,

merge.ranges=TRUE)

queryLoc2refLoc(qloc, cigar, pos=1)
queryLocs2refLocs(qlocs, cigar, pos, flag=NULL)

splitCigar(cigar)
cigarToRleList(cigar)
cigarToCigarTable(cigar)
summarizeCigarTable(x)

Arguments

cigar A character vector/factor containing the extended CIGAR string for each read.
For cigarToIRanges and queryLoc2refLoc, this must be a single string
(i.e. a character vector/factor of length 1).

before.hard.clipping
Should the returned widths be the lengths of the reads before or after "hard
clipping"? Hard clipping of a read is encoded with an H in the CIGAR. If NO

1

2 cigar-utils

(before.hard.clipping=FALSE, the default), then the returned widths
are the lengths of the query sequences stored in the SAM/BAM file. If YES
(before.hard.clipping=TRUE), then the returned widths are the lengths
of the original reads.

start,end,width
Vectors of integers. NAs and negative values are accepted and "solved" accord-
ing to the rules of the SEW (Start/End/Width) interface (see ?solveUserSEW
for the details).

drop.D.ranges
Should the ranges corresponding to a deletion from the reference (encoded with
a D in the CIGAR) be dropped? By default we keep them to be consistent with
the pileup tool from SAMtools. Note that, when drop.D.ranges is TRUE,
then Ds and Ns in the CIGAR are equivalent.

merge.ranges Should adjacent ranges coming from the same cigar be merged or not? Using
TRUE (the default) can significantly reduce the size of the returned object.

pos An integer vector containing the 1-based leftmost position/coordinate for each
(eventually clipped) read sequence.

flag NULL or an integer vector containing the SAM flag for each read. Accord-
ing to the SAM specs, flag bits 0x004 and 0x400 have the following meaning:
when bit 0x004 is ON then "the query sequence itself is unmapped" and when
bit 0x400 is ON then "the read is either a PCR duplicate or an optical dupli-
cate". When flag is provided, cigarToIRangesListByAlignment and
cigarToIRangesListByRName ignore these reads.

rname A character vector/factor containing the name of the reference sequence asso-
ciated with each read (i.e. the name of the sequence the read has been aligned
to).

qloc An integer vector containing "query-based locations" i.e. 1-based locations rel-
ative to the query sequence stored in the SAM/BAM file.

qlocs A list of the same length as cigar where each element is an integer vector
containing "query-based locations" i.e. 1-based locations relative to the corre-
sponding query sequence stored in the SAM/BAM file.

x A DataFrame produced by cigarToCigarTable.

Value

For cigarOpTable: An integer matrix with number of rows equal to the length of cigar and
seven columns, one for each extended CIGAR operation.

For cigarToQWidth: An integer vector of the same length as cigar where each element is
the width of the query (i.e. the length of the query sequence) as inferred from the corresponding
element in cigar (NAs in cigar will produce NAs in the returned vector).

For cigarQNarrow and cigarNarrow: A character vector of the same length as cigar con-
taining the narrowed cigars. In addition the vector has an "rshift" attribute which is an integer vector
of the same length as cigar. It contains the values that would need to be added to the POS field
of a SAM/BAM file as a consequence of this cigar narrowing.

For cigarToWidth: An integer vector of the same length as cigar where each element is the
width of the alignment (i.e. its total length on the reference, gaps included) as inferred from the
corresponding element in cigar (NAs in cigar will produce NAs in the returned vector).

For cigarToIRanges: An IRanges object describing where the bases in the read align with
respect to an imaginary reference sequence assuming that the leftmost aligned base is at position 1
in the reference (i.e. at the first position).

cigar-utils 3

For cigarToIRangesListByAlignment: A CompressedNormalIRangesList object of the
same length as cigar.

For cigarToIRangesListByRName: A named IRangesList object with one element (IRanges)
per unique reference sequence.

For queryLoc2refLoc: An integer vector of the same length as qloc containing the "reference-
based locations" (i.e. the 1-based locations relative to the reference sequence) corresponding to the
"query-based locations" passed in qloc.

For queryLocs2refLocs: A list of the same length as qlocs where each element is an inte-
ger vector containing the "reference-based locations" corresponding to the "query-based locations"
passed in the corresponding element in qlocs.

For splitCigar: A list of the same length as cigar where each element is itself a list with 2
elements of the same lengths, the 1st one being a raw vector containing the CIGAR operations and
the 2nd one being an integer vector containing the lengths of the CIGAR operations.

For cigarToRleList: A CompressedRleList object.

For cigarToCigarTable: A frequency table of the CIGARs in the form of a DataFrame with
two columns: cigar (a CompressedRleList) and count (an integer).

For summarizeCigarTable: A list with two elements: AlignedCharacters (integer) and
Indels (matrix)

Author(s)

H. Pages and P. Aboyoun

References

http://samtools.sourceforge.net/

See Also

IRanges-class, IRangesList-class, coverage, RleList-class

Examples

A. SIMPLE EXAMPLES

With a cigar vector of length 1:
cigar1 <- "3H15M55N4M2I6M2D5M6S"

cigarToQWidth()/cigarToWidth():
cigarToQWidth(cigar1)
cigarToQWidth(cigar1, before.hard.clipping=TRUE)
cigarToWidth(cigar1)

cigarQNarrow():
cigarQNarrow(cigar1, start=4, end=-3)
cigarQNarrow(cigar1, start=10)
cigarQNarrow(cigar1, start=19)
cigarQNarrow(cigar1, start=24)

cigarNarrow():
cigarNarrow(cigar1) # only drops the soft/hard clipping

http://samtools.sourceforge.net/

4 cigar-utils

cigarNarrow(cigar1, start=10)
cigarNarrow(cigar1, start=15)
cigarNarrow(cigar1, start=15, width=57)
cigarNarrow(cigar1, start=16)
#cigarNarrow(cigar1, start=16, width=55) # ERROR! (empty cigar)
cigarNarrow(cigar1, start=71)
cigarNarrow(cigar1, start=72)
cigarNarrow(cigar1, start=75)

cigarToIRanges():
cigarToIRanges(cigar1)
cigarToIRanges(cigar1, merge.ranges=FALSE)
cigarToIRanges(cigar1, drop.D.ranges=TRUE)

With a cigar vector of length 4:
cigar2 <- c("40M", cigar1, "2S10M2000N15M", "3H25M5H")
pos <- c(1, 1001, 1, 351)
cigarToIRangesListByAlignment(cigar2, pos)
rname <- c("chr6", "chr6", "chr2", "chr6")
cigarToIRangesListByRName(cigar2, rname, pos)

cigarOpTable(cigar2)

splitCigar(cigar2)
cigarToRleList(cigar2)

cigarToCigarTable(cigar2)
cigarToCigarTable(cigar2)[,"cigar"]
cigarToCigarTable(cigar2)[,"count"]

summarizeCigarTable(cigarToCigarTable(cigar2))

B. PERFORMANCE

if (interactive()) {
We simulate 20 millions aligned reads, all 40-mers. 95% of them
align with no indels. 5% align with a big deletion in the
reference. In the context of an RNAseq experiment, those 5% would
be suspected to be "junction reads".
set.seed(123)
nreads <- 20000000L
njunctionreads <- nreads * 5L / 100L
cigar3 <- character(nreads)
cigar3[] <- "40M"
junctioncigars <- paste(

paste(10:30, "M", sep=""),
paste(sample(80:8000, njunctionreads, replace=TRUE), "N", sep=""),
paste(30:10, "M", sep=""), sep="")

cigar3[sample(nreads, njunctionreads)] <- junctioncigars
some_fake_rnames <- paste("chr", c(1:6, "X"), sep="")
rname <- sample(some_fake_rnames, nreads, replace=TRUE)
pos <- sample(80000000L, nreads, replace=TRUE)

The following takes < 5 sec. to complete:
system.time(rglist <- cigarToIRangesListByAlignment(cigar3, pos))

GRanges-findOverlaps 5

The following takes < 10 sec. to complete:
system.time(irl <- cigarToIRangesListByRName(cigar3, rname, pos))

Internally, cigarToIRangesListByRName() turns 'rname' into a factor
before starting the calculation. Hence it will run sligthly
faster if 'rname' is already a factor.
rname2 <- as.factor(rname)
system.time(irl2 <- cigarToIRangesListByRName(cigar3, rname2, pos))

The sizes of the resulting objects are about 240M and 160M,
respectively:
object.size(rglist)
object.size(irl)

}

C. COMPUTE THE COVERAGE OF THE READS STORED IN A BAM FILE

The information stored in a BAM file can be used to compute the
"coverage" of the mapped reads i.e. the number of reads that hit any
given position in the reference genome.
The following function takes the path to a BAM file and returns an
object representing the coverage of the mapped reads that are stored
in the file. The returned object is an RleList object named with the
names of the reference sequences that actually receive some coverage.

extractCoverageFromBAM <- function(file)
{

This ScanBamParam object allows us to load only the necessary
information from the file.
param <- ScanBamParam(flag=scanBamFlag(isUnmappedQuery=FALSE,

isDuplicate=FALSE),
what=c("rname", "pos", "cigar"))

bam <- scanBam(file, param=param)[[1]]
Note that unmapped reads and reads that are PCR/optical duplicates
have already been filtered out by using the ScanBamParam object above.
irl <- cigarToIRangesListByRName(bam$cigar, bam$rname, bam$pos)
irl <- irl[elementLengths(irl) != 0] # drop empty elements
coverage(irl)

}

library(Rsamtools)
f1 <- system.file("extdata", "ex1.bam", package="Rsamtools")
extractCoverageFromBAM(f1)

GRanges-findOverlaps
GRanges and GRangesList Interval Overlaps

Description

Finds interval overlaps between a GRanges/GRangesList object and a GRanges/GRangesList ob-
ject.

6 GRanges-findOverlaps

Usage

S4 method for signature 'GenomicRanges,GenomicRanges':
findOverlaps(query, subject, maxgap = 0L, minoverlap = 1L,

type = c("any", "start", "end"), select = c("all", "first"))
S4 method for signature 'GenomicRanges,GenomicRanges':

countOverlaps(query, subject, maxgap = 0L, minoverlap = 1L,
type = c("any", "start", "end"))

S4 method for signature 'GenomicRanges,GenomicRanges':
subsetByOverlaps(query, subject, maxgap = 0L, minoverlap = 1L,

type = c("any", "start", "end"))
S4 method for signature 'GenomicRanges,GenomicRanges':

match(x, table, nomatch = NA_integer_, incomparables = NULL)
Also: x %in% table

Arguments

query, subject, x, table
A GRanges or GRangesList object. RangesList and RangedData are also ac-
cepted for one of query or subject (x or table for match).

maxgap A non-negative integer representing the maximum distance between a query
interval and a subject interval.

minoverlap Ignored.

type The type of acceptable overlap: "any" - any overlap within maxgap, "start"
- the start of the query overlaps the start of the subject within maxgap,
and "end" - the end of the query overlaps the end of the subject within
maxgap.

select Overlaps to return: "all" - select all overlaps, and "first" - select the first
overlap.

nomatch The integer value to be returned in the case when no match is found.
incomparables

This value is ignored.

Details

The findOverlaps methods involving GRanges and GRangesList objects use the triplet (se-
quence name, range, strand) to determine which features (see paragraph below for the definition of
feature) from the query overlap which features in the subject, where a strand value of "*" is
treated as occurring on both the "+" and "-" strand. An overlap is recorded when a feature in the
query and a feature in the subject have the same sequence name, have a compatible pairing
of strands (e.g. "+"/"+", "-"/"-", "*"/"+", "*"/"-", etc.), and satisfy the interval overlap
requirements. Strand is taken as "*" for RangedData and RangesList.

In the context of findOverlaps, a feature is a collection of ranges that are treated as a single
entity. For GRanges objects, a feature is a single range; while for GRangesList objects, a feature
is a list element containing a set of ranges. In the results, the features are referred to by number,
which run from 1 to length(query)/length(subject).

Value

For findOverlaps either a RangesMatching object when select = "all" or an integer
vector when select = "first".

GRanges-findOverlaps 7

For countOverlaps an integer vector containing the tabulated query overlap hits.

For subsetByOverlaps an object of the same class as query containing the subset that over-
lapped at least one entity in subject.

For match same as findOverlaps when select = "first".

For %in% the logical vector produced by !is.na(match(x, table)).

For RangedData and RangesList, with the exception of subsetByOverlaps, the results
align to the unlisted form of the object. This turns out to be fairly convenient for RangedData
(not so much for RangesList, but something has to give).

Author(s)

P. Aboyoun and S. Falcon and M. Lawrence

See Also

findOverlaps, GRanges, GRangesList

Examples

GRanges object
gr <-
GRanges(seqnames =

Rle(c("chr1", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)),
ranges =
IRanges(1:10, width = 10:1, names = head(letters,10)),
strand =
Rle(strand(c("-", "+", "*", "+", "-")),

c(1, 2, 2, 3, 2)),
score = 1:10,
GC = seq(1, 0, length=10))

gr

GRangesList object
gr1 <-
GRanges(seqnames = "chr2", ranges = IRanges(3, 6),

strand = "+", score = 5L, GC = 0.45)
gr2 <-
GRanges(seqnames = c("chr1", "chr1"),

ranges = IRanges(c(7,13), width = 3),
strand = c("+", "-"), score = 3:4, GC = c(0.3, 0.5))

gr3 <-
GRanges(seqnames = c("chr1", "chr2"),

ranges = IRanges(c(1, 4), c(3, 9)),
strand = c("-", "-"), score = c(6L, 2L), GC = c(0.4, 0.1))

grlist <- GRangesList("gr1" = gr1, "gr2" = gr2, "gr3" = gr3)

Overlapping two GRanges objects
table(gr %in% gr1)
countOverlaps(gr, gr1)
findOverlaps(gr, gr1)
subsetByOverlaps(gr, gr1)
countOverlaps(gr, gr1, type = "start")
findOverlaps(gr, gr1, type = "start")
subsetByOverlaps(gr, gr1, type = "start")
findOverlaps(gr, gr1, select = "first")

8 GappedAlignments-class

Overlapping a GRanges and a GRangesList object
table(grlist %in% gr)
countOverlaps(grlist, gr)
findOverlaps(grlist, gr)
subsetByOverlaps(grlist, gr)
countOverlaps(grlist, gr, type = "start")
findOverlaps(grlist, gr, type = "start")
subsetByOverlaps(grlist, gr, type = "start")
findOverlaps(grlist, gr, select = "first")

Overlapping two GRangesList objects
countOverlaps(grlist, rev(grlist))
findOverlaps(grlist, rev(grlist))
subsetByOverlaps(grlist, rev(grlist))

GappedAlignments-class
GappedAlignments objects

Description

The GappedAlignments class is a simple container which purpose is to store a set of alignments
that will hold just enough information for supporting the operations described below.

WARNING! This is work-in-progress. Expect frequent changes in functionalities.

Details

A GappedAlignments object is a vector-like object where each element describes an alignment i.e.
how a given sequence (called "query" or "read", typically short) aligns to a reference sequence
(typically long).

Most of the time, a GappedAlignments object will be created by loading records from a BAM
(or SAM) file and each element in the resulting object will correspond to a record. BAM/SAM
records generally contain a lot of information but only part of that information is loaded in the
GappedAlignments object. In particular, we discard the query sequences (SEQ field), the query
ids (QNAME field), the query qualities (QUAL), the mapping qualities (MAPQ) and any other
information that is not needed in order to support the operations or methods described below.

This means that multi-reads (i.e. reads with multiple hits in the reference) won’t receive any special
treatment i.e. the various SAM/BAM records corresponding to a multi-read will show up in the
GappedAlignments object as if they were coming from different/unrelated queries. Also paired-end
reads will be treated as single-end reads and the pairing information will be lost.

Each element of a GappedAlignments object consists of:

• The name of the reference sequence. (This is the RNAME field in a SAM/BAM record.)

• The strand in the reference sequence to which the query is aligned. (This information is stored
in the FLAG field in a SAM/BAM record.)

• The CIGAR string in the "Extended CIGAR format" (see the SAM Format Specifications for
the details).

• The 1-based leftmost position/coordinate of the clipped query relative to the reference se-
quence. We will refer to it as the "start" of the query. (This is the POS field in a SAM/BAM
record.)

GappedAlignments-class 9

• The 1-based rightmost position/coordinate of the clipped query relative to the reference se-
quence. We will refer to it as the "end" of the query. (This is NOT explicitly stored in a
SAM/BAM record but can be inferred from the POS and CIGAR fields.) Note that all po-
sitions/coordinates are always relative to the first base at the 5’ end of the plus strand of the
reference sequence, even when the query is aligned to the minus strand.

• The genomic intervals between the "start" and "end" of the query that are "covered" by the
alignment. Saying that the full [start,end] interval is covered is the same as saying that the
alignment has no gap (no N in the CIGAR). It is then considered a simple alignment. Note
that a simple alignment can have mismatches or deletions (in the reference). In other words, a
deletion, encoded with a D, is NOT considered a gap.

Note that the last 2 items are not expicitly stored in the GappedAlignments object: they are inferred
on-the-fly from the CIGAR and the "start".

The rest of this man page will focus on describing how to:

• Access the information stored in a GappedAlignments object in a way that is independent
from how the data are actually stored internally.

• How to create and manipulate a GappedAlignments object.

Constructor

readGappedAlignments(file, format="BAM", ...): Read a file as a GappedAlign-
ments object. The function is just a front-end that delegates to a format-specific back-end
function (any extra argument is passed to the back-end function). Only the BAM format is
supported for now. Its back-end is the readBamGappedAlignments function defined in
the Rsamtools package. See ?readBamGappedAlignments for more information (you
might need to install and load the package first).

Accessor methods

In the code snippets below, x is a GappedAlignments object.

length(x): Returns the number of alignments in x.

rname(x): Returns a character factor of length length(x) containing the name of the refer-
ence sequence for each alignment.

rname(x) <- value: Replace the name of the reference sequence for each alignment. value
must be a character factor/vector, or a ’character’ Rle, or a ’factor’ Rle, with the same length
as x.

strand(x): Returns a character factor of length length(x) (with levels +, - and *) containing
the strand in the reference sequence to which the query is aligned.

cigar(x): Returns a character vector of length length(x) containing the CIGAR string for
each alignment.

qwidth(x): Returns an integer vector of length length(x) containing the length of the query
after hard clipping (i.e. the length of the query sequence that is stored in the corresponding
SAM/BAM record).

grglist(x), grg(x), rglist(x): Returns a GRangesList, a GRanges or a Compressed-
NormalIRangesList object of length length(x) where each element represents the regions
in the reference to which a query is aligned. See Details section above for more information.

start(x), end(x): Returns an integer vector of length length(x) containing the "start"
and "end" (respectively) of the query for each alignment. See Details section above for the
exact definitions of the "start" and "end" of a query. Note that start(x) and end(x)

10 GappedAlignments-class

are equivalent to start(grg(x)) and end(grg(x)), respectively (or, alternatively, to
min(rglist(x)) and max(rglist(x)), respectively).

width(x): Equivalent to width(grg(x)) (or, alternatively, to end(x) - start(x) +
1L). Note that this is generally different from qwidth(x) except for alignments with a trivial
CIGAR string (i.e. a string of the form "<n>M" where <n> is a number).

ngap(x): Returns an integer vector of length length(x) containing the number of gaps for
each alignment. Equivalent to elementLengths(rglist(x)) - 1L.

Subsetting and related operations

In the code snippets below, x is a GappedAlignments object.

x[i]: Returns a new GappedAlignments object made of the selected alignments. i can be a
numeric or logical vector.

Other methods

qnarrow(x, start=NA, end=NA, width=NA): x is a GappedAlignments object. Re-
turns a new GappedAlignments object of the same length as x describing how the narrowed
query sequences align to the reference. The start/end/width arguments describe how
to narrow the query sequences. They must be vectors of integers. NAs and negative values
are accepted and "solved" according to the rules of the SEW (Start/End/Width) interface (see
?solveUserSEW for the details).

narrow(x, start=NA, end=NA, width=NA): x is a GappedAlignments object. Returns
a new GappedAlignments object of the same length as x describing the narrowed alignments.
Unlike with qnarrow now the start/end/width arguments describe the narrowing on
the reference side, not the query side. Like with qnarrow, they must be vectors of inte-
gers. NAs and negative values are accepted and "solved" according to the rules of the SEW
(Start/End/Width) interface (see ?solveUserSEW for the details).

pintersect(x, y): Either x is a GappedAlignments object and y is a GRanges object or x
is a GRanges object and y is a GappedAlignments object. Returns a new GappedAlignments
object of the same length as the GappedAlignments input arguments. Like with narrow, the
resulting "parallel" intersection is with respect to the reference.

coverage(x, shift=0L, width=NULL, weight=1L): x is a GappedAlignments ob-
ject. Returns a named RleList object with one element (integer-Rle) per unique reference
sequence. Each element represents x’s coverage of the corresponding reference sequence,
that is, how many times each nucleotide position in the sequence is covered by the align-
ments in x. Note that the semantic of the coverage method for GappedAlignments objects
is different from the semantic of the method for Ranges objects (the latter returns a single
integer-Rle object representing the coverage of all ranges relatively to a unique imaginary
reference sequence).

findOverlaps(query, subject, ...), countOverlaps(query, subject, ...),
subsetByOverlaps(query, subject, ...), match(x, table, nomatch=NA_integer_,
incomparables=NULL), x %in% table: query or subject or both are GappedAlign-
ments objects. findOverlaps(query, subject, ...) is equivalent to findOverlaps(grglist(query),
subject, ...) when query is a GappedAlignments object, or to findOverlaps(query,
grglist(subject), ...) when subject is a GappedAlignments object, or to findOverlaps(grglist(query),
grglist(subject), ...) when both are GappedAlignments objects. The same apply
to countOverlaps(query, subject, ...) and subsetByOverlaps(query,
subject, ...). See ¿findOverlaps,GRangesList,GenomicRanges-method‘,

GappedAlignments-class 11

¿countOverlaps,GRangesList,GenomicRanges-method‘ and ¿subsetByOverlaps,GRangesList,GenomicRanges-
method‘ for more information (in particular for descriptions of the extra arguments and the
returned object).

Author(s)

H. Pages and P. Aboyoun

References

http://samtools.sourceforge.net/

See Also

readBamGappedAlignments, GRangesList-class, NormalIRanges-class, CompressedNormalIRangesList-
class, coverage, RleList-class, pintersect,GRanges,GRanges-method, findOverlaps,GRangesList,GenomicRanges-
method, countOverlaps,GRangesList,GenomicRanges-method, subsetByOverlaps,GRangesList,GenomicRanges-
method,

Examples

library(Rsamtools) # the toy file below is there
aln1_file <- system.file("extdata", "ex1.bam", package="Rsamtools")
aln1 <- readGappedAlignments(aln1_file)
aln1

A. BASIC MANIPULATION

length(aln1)
head(aln1)
head(rname(aln1))
levels(rname(aln1))

Rename the reference sequences:
rname(aln1) <- sub("seq", "chr", rname(aln1))
levels(rname(aln1))

head(strand(aln1))
head(cigar(aln1))
head(qwidth(aln1))
table(qwidth(aln1))

grglist(aln1) # a GRangesList object
grg(aln1) # a GRanges object
rglist(aln1) # a CompressedNormalIRangesList object
stopifnot(identical(elementLengths(grglist(aln1)), elementLengths(rglist(aln1))))

head(start(aln1))
head(end(aln1))
head(width(aln1))
head(ngap(aln1))

B. SUBSETTING

http://samtools.sourceforge.net/

12 GappedAlignments-class

aln1[strand(aln1) == "-"]
aln1[grep("I", cigar(aln1), fixed=TRUE)]
aln1[grep("N", cigar(aln1), fixed=TRUE)] # no gaps

A confirmation that all the queries map to the reference with no
gaps:
stopifnot(all(ngap(aln1) == 0))

Different ways to subset:
aln1[6] # a GappedAlignments object of length 1
grglist(aln1)[[6]] # a GRanges object of length 1
rglist(aln1)[[6]] # a NormalIRanges object of length 1

Ds are NOT gaps:
ii <- grep("D", cigar(aln1), fixed=TRUE)
aln1[ii]
ngap(aln1[ii])
grglist(aln1[ii])

qwidth() vs width():
aln1[qwidth(aln1) != width(aln1)]

This MUST return an empty object:
aln1[cigar(aln1) == "35M" & qwidth(aln1) != 35]
but this doesn't have too:
aln1[cigar(aln1) != "35M" & qwidth(aln1) == 35]

C. qnarrow()/narrow()

Note that there is no difference between qnarrow() and narrow() when
all the alignments are simple and with no indels.

This trims 3 nucleotides on the left and 5 nucleotides on the right
of each alignment:
qnarrow(aln1, start=4, end=-6)
Note that the 'start' and 'end' arguments specify what part of each
query sequence should be kept (negative values being relative to the
right end of the query sequence), not what part should be trimmed.

Trimming on the left doesn't change the "end" of the queries.
qnarrow(aln1, start=21)
stopifnot(identical(end(qnarrow(aln1, start=21)), end(aln1)))

D. coverage()

coverage(aln1)

E. findOverlaps()/countOverlaps()

findOverlaps(aln1, grg(aln1)[1])
sum(countOverlaps(aln1, grg(aln1)[1]))
subsetByOverlaps(aln1, grg(aln1)[1])
table(match(aln1, grg(aln1)[1]), useNA = "ifany")
table(aln1 %in% grg(aln1)[1])

GRanges-class 13

GRanges-class GRanges objects

Description

The GRanges class is a container for the genomic locations and their associated annotations.

Details

The GRanges class stores the sequences of genomic locations and associated annotations. Each
element in the sequence is comprised of a sequence name, an interval, a strand, and optional element
metadata (e.g. score, GC content, etc.). This information is stored in four slots:

seqnames a ’factor’ Rle object containing the sequence names.

ranges an IRanges object containing the ranges.

strand a ’factor’ Rle object containing the strand information.

elementMetadata a DataFrame object containing the annotation columns. Columns cannot
be named "seqnames", "ranges", "strand", "seqlengths", "isCircular",
"start", "end", "width", or "element".

Constructor

GRanges(seqnames = Rle(), ranges = IRanges(), strand = Rle("*", length(seqnames)),
..., seqlengths = structure(rep(NA_integer_, length(levels(seqnames))),
names = levels(seqnames))): Creates a GRanges object.

seqnames Rle object, character vector, or factor containing the sequence names.
ranges IRanges object containing the ranges.
strand Rle object, character vector, or factor containing the strand information.
seqlengths a named integer vector containing the sequence lengths for each level(seqnames).
... Optional annotation columns for the elementMetadata slot. These columns cannot

be named "start", "end", "width", or "element".

Coercion

In the code snippets below, x is a GRanges object.

as(from, "GRanges"): Creates a GRanges object from a RangedData or RangesList object.

as(from, "RangedData"): Creates a RangedData object from a GRanges object. The
strand and the values become columns in the result. The seqlengths(from) and
isCircular(from) vectors are stored in the element metadata of ranges(rd).

as(from, "RangesList"): Creates a RangesList object from a GRanges object. The strand
and values become element metadata on the ranges. The seqlengths(from) and isCircular(from)
vectors are stored in the element metadata.

as.data.frame(x, row.names = NULL, optional = FALSE): Creates a data.frame
with columns seqnames (factor), start (integer), end (integer), width (integer), strand
(factor), as well as the additional columns stored in elementMetadata(x).

14 GRanges-class

Accessors

In the following code snippets, x is a GRanges object.

seqnames(x), seqnames(x) <- value: Gets or sets the sequence names. value can be
an Rle object, character vector, or factor.

ranges(x), ranges(x) <- value: Gets or sets the ranges. value can be a Ranges object.

strand(x), strand(x) <- value: Gets or sets the strand. value can be an Rle object,
character vector, or factor.

seqinfo(x): Returns a Seqinfo object containing information about the underlying sequences.

seqlengths(x), seqlengths(x) <- value: Gets or sets the seqlengths. seqlengths(x)
is formally equivalent to seqlengths(seqinfo(x)). value can be a named non-
negative integer or numeric vector.

isCircular(x): Formally equivalent to isCircular(seqinfo(x)).

isCircularWithKnownLength(x): Formally equivalent to isCircularWithKnownLength(seqinfo(x)).

elementMetadata(x), elementMetadata(x) <- value: Gets or sets the optional
data columns. value can be a DataFrame, data.frame object, or NULL.

values(x), values(x) <- value: Alternative to elementMetadata functions.

names(x), names(x) <- value: Gets or sets the names of the elements.

length(x): Gets the number of elements.

Ranges methods

In the following code snippets, x is a GRanges object.

start(x), start(x) <- value: Gets or sets start(ranges(x)).

end(x), end(x) <- value: Gets or sets end(ranges(x)).

width(x), width(x) <- value: Gets or sets width(ranges(x)).

flank(x, width, start = TRUE, both = FALSE, use.names = TRUE): Returns
a new GRanges object containing intervals of width width that flank the intervals in x. The
start argument takes a logical indicating whether x should be flanked at the "start" (TRUE)
or the "end" (FALSE), which for strand(x) != "-" is start(x) and end(x) respec-
tively and for strand(x) == "-" is codeend(x) and start(x) respectively. The both
argument takes a single logical value indicating whether the flanking region width positions
extends into the range. If both = TRUE, the resulting range thus straddles the end point,
with width positions on either side.

resize(x, width, use.names = TRUE): Returns a new GRanges object containing in-
tervals that have been resized to width width based on the strand(x) values. Elements
where strand(x) == "+" are anchored at start(x), elements where strand(x)
== "-" are anchored at the end(x), and elements where strand = "*" are anchored at
(end(x) - start(x))%/%2. The use.names argument determines whether or not to
keep the names on the ranges.

shift(x, shift, use.names = TRUE): Returns a new GRanges object containing in-
tervals with start and end values that have been shifted by integer vector shift. The use.names
argument determines whether or not to keep the names on the ranges.

disjoin(x): Returns a new GRanges object containing disjoint ranges for each distinct (seq-
name, strand) pairing. The names (names(x)) and the columns in x are dropped.

GRanges-class 15

gaps(x, start = 1L, end = seqlengths(x)): Returns a new GRanges object con-
taining complemented ranges for each distinct (seqname, strand) pairing. The names (names(x))
and the columns in x are dropped. See ?gaps for more information about range complements
and for a description of the optional arguments.

range(x, ...): Returns a new GRanges object containing range bounds for each distinct
(seqname, strand) pairing. The names (names(x)) and the columns in x are dropped.

reduce(x, drop.empty.ranges = FALSE, min.gapwidth = 1L): Returns a new
GRanges object containing reduced ranges for each distinct (seqname, strand) pairing. The
names (names(x)) and the columns in x are dropped. See ?reduce for more information
about range reduction and for a description of the optional arguments.

coverage(x, shift = list(0L), width = as.list(seqlengths(x)), weight
= list(1L)): Returns a named RleList object with one element (’integer’ Rle) per unique
sequence name representing how many times each position in the sequence is covered by the
intervals in x. The shift, width, and weight arguments take list arguments, possibly
named by the unique sequence names in x, whose elements are passed into the coverage
method for IRanges object. See ?coverage for more information on these optional argu-
ments.

Splitting and Combining

In the code snippets below, x is a GRanges object.

append(x, values, after = length(x)): Inserts the values into x at the position
given by after, where x and values are of the same class.

c(x, ...): Combines x and the GRanges objects in ... together. Any object in ... must
belong to the same class as x, or to one of its subclasses, or must be NULL. The result is an
object of the same class as x.

split(x, f = seq_len(length(x)), drop = FALSE): Splits x into a GRangesList,
according to f, dropping elements corresponding to unrepresented levels if drop is TRUE.
Split factor f defaults to splitting each element of x into a separate element in the resulting
GRangesList object.

Subsetting

In the code snippets below, x is a GRanges object.

x[i, j], x[i, j] <- value: Gets or sets elements iwith optional elementMetadata columns
elementMetadata(x)[,j], where i can be missing; an NA-free logical, numeric, or
character vector; or a ’logical’ Rle object.

x[i,j] <- value: Replaces elements i and optional elementMetadata columns jwith value.

head(x, n = 6L): If n is non-negative, returns the first n elements of the GRanges object. If
n is negative, returns all but the last abs(n) elements of the GRanges object.

rep(x, times, length.out, each): Repeats the values in x through one of the follow-
ing conventions:

times Vector giving the number of times to repeat each element if of length length(x),
or to repeat the whole vector if of length 1.

length.out Non-negative integer. The desired length of the output vector.
each Non-negative integer. Each element of x is repeated each times.

rev(x): Returns a new object of the same class as x made of the original elements in the reverse
order.

16 GRanges-class

seqselect(x, start=NULL, end=NULL, width=NULL): Similar to window, except
that multiple consecutive subsequences can be requested for concatenation. As such two of
the three start, end, and width arguments can be used to specify the consecutive subse-
quences. Alternatively, start can take a Ranges object or something that can be converted
to a Ranges object like an integer vector, logical vector or logical Rle. If the concatenation of
the consecutive subsequences is undesirable, consider using Views.

seqselect(x, start=NULL, end=NULL, width=NULL) <- value: Similar to window<-
, except that multiple consecutive subsequences can be replaced by a value whose length is
a divisor of the number of elements it is replacing. As such two of the three start, end,
and width arguments can be used to specify the consecutive subsequences. Alternatively,
start can take a Ranges object or something that can be converted to a Ranges object like
an integer vector, logical vector or logical Rle.

subset(x, subset): Returns a new object of the same class as x made of the subset using
logical vector subset, where missing values are taken as FALSE.

tail(x, n = 6L): If n is non-negative, returns the last n elements of the GRanges object. If
n is negative, returns all but the first abs(n) elements of the GRanges object.

window(x, start = NA, end = NA, width = NA, frequency = NULL, delta
= NULL, ...): Extracts the subsequence window from the GRanges object using:

start, end, width The start, end, or width of the window. Two of the three are required.
frequency, delta Optional arguments that specify the sampling frequency and increment

within the window.

In general, this is more efficient than using "[" operator.

window(x, start = NA, end = NA, width = NA, keepLength = TRUE) <- value:
Replaces the subsequence window specified on the left (i.e. the subsequence in x specified by
start, end and width) by value. value must either be of class class(x), belong to a
subclass of class(x), be coercible to class(x), or be NULL. If keepLength is TRUE,
the elements of value are repeated to create a GRanges object with the same number of el-
ements as the width of the subsequence window it is replacing. If keepLength is FALSE,
this replacement method can modify the length of x, depending on how the length of the left
subsequence window compares to the length of value.

Author(s)

P. Aboyoun

See Also

GRangesList-class, Seqinfo-class, Sequence-class, Ranges-class, Rle-class, DataFrame-class

Examples

gr <-
GRanges(seqnames =

Rle(c("chr1", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)),
ranges =
IRanges(1:10, width = 10:1, names = head(letters,10)),
strand =
Rle(strand(c("-", "+", "*", "+", "-")),

c(1, 2, 2, 3, 2)),
score = 1:10,
GC = seq(1, 0, length=10))

gr

GRangesList-class 17

Summarizing elements
table(seqnames(gr))
sum(width(gr))
summary(elementMetadata(gr)[,"score"]) # or values(gr)
coverage(gr)

Changing sequence name
unique(seqnames(gr))
seqnames(gr) <- sub("chr", "Chrom", seqnames(gr))
gr

Intra-interval operations
flank(gr, 10)
resize(gr, 10)
shift(gr, 1)

Inter-interval operations
disjoin(gr)
gaps(gr, start = 1, end = 10)
range(gr)
reduce(gr)

GRangesList-class GRangesList objects

Description

The GRangesList class is a container for storing a collection of GRanges objects.

Constructor

GRangesList(...): Creates a GRangesList object using GRanges objects supplied in

Coercion

In the code snippets below, x is a GRangesList object.

as(from, "GRangesList"): Creates a GRangesList object from a RangedDataList object.

as.data.frame(x, row.names = NULL, optional = FALSE): Creates a data.frame
with columns element (character), seqnames (factor), start (integer), end (integer),
width (integer), strand (factor), as well as the additional columns stored in elementMetadata(unlist(x)).

as.list(x, use.names = TRUE): Creates a list containing the elements of x.

Accessors

In the following code snippets, x is a GRanges object.

seqnames(x), seqnames(x) <- value: Gets or sets the sequence names in the form of
an RleList. value can be an RleList or CharacterList.

ranges(x), ranges(x) <- value: Gets or sets the ranges in the form of a CompressedI-
RangesList. value can be a RangesList object.

18 GRangesList-class

strand(x), strand(x) <- value: Gets or sets the strand in the form of an RleList.
value can be an RleList or CharacterList object.

seqinfo(x): Returns a Seqinfo object containing information about the underlying sequences.
seqlengths(x), seqlengths(x) <- value: Gets or sets the seqlengths. seqlengths(x)

is formally equivalent to seqlengths(seqinfo(x)). value can be a named non-
negative integer or numeric vector.

isCircular(x): Formally equivalent to isCircular(seqinfo(x)).
isCircularWithKnownLength(x): Formally equivalent to isCircularWithKnownLength(seqinfo(x)).
elementMetadata(x), elementMetadata(x) <- value: Gets or sets the optional

data columns for the GRangesList elements. value can be a DataFrame, data.frame object,
or NULL.

values(x), values(x) <- value: Alternative to elementMetadata functions.

List methods

In the following code snippets, x is a GRangesList object.

length(x): Gets the number of elements.
names(x), names(x) <- value: Gets or sets the names of the elements.
elementLengths(x): Gets the length of each of the elements.
isEmpty(x): Returns a logical indicating either if the GRangesList has no elements or if all its

elements are empty.

RangesList methods

In the following code snippets, x is a GRangesList object.

start(x), start(x) <- value: Gets or sets start(ranges(x)).
end(x), end(x) <- value: Gets or sets end(ranges(x)).
width(x), width(x) <- value: Gets or sets width(ranges(x)).
shift(x, shift, use.names=TRUE): Returns a new GRangesList object containing in-

tervals with start and end values that have been shifted by integer vector shift. The use.names
argument determines whether or not to keep the names on the ranges.

coverage(x, shift = list(0L), width = list(NULL), weight = list(1L)):
Returns a named RleList object with one element (’integer’ Rle) per unique sequence name
representing how many times each position in the sequence is covered by the intervals in x.
The shift, width, and weight arguments take list arguments, possibly named by the
unique sequence names in x, whose elements are passed into the coverage method for
IRanges object. See ?coverage for more information on these optional arguments.

Combining

In the code snippets below, x is a GRangesList object.

append(x, values, after = length(x)): Inserts the values into x at the position
given by after, where x and values are of the same class.

c(x, ...): Combines x and the GRangesList objects in ... together. Any object in ...
must belong to the same class as x, or to one of its subclasses, or must be NULL. The result is
an object of the same class as x.

unlist(x, recursive = TRUE, use.names = TRUE): Concatenates the elements of
x into a single GRanges object.

GRangesList-class 19

Subsetting

In the following code snippets, x is a GRangesList object.

x[i, j], x[i, j] <- value: Gets or sets elements iwith optional values columns values(x)[,j],
where i can be missing; an NA-free logical, numeric, or character vector; a ’logical’ Rle ob-
ject, or an AtomicList object.

x[[i]], x[[i]] <- value: Gets or sets element i, where i is a numeric or character vector
of length 1.

x$name, x$name <- value: Gets or sets element name, where name is a name or character
vector of length 1.

head(x, n = 6L): If n is non-negative, returns the first n elements of the GRangesList object.
If n is negative, returns all but the last abs(n) elements of the GRangesList object.

rep(x, times, length.out, each): Repeats the values in x through one of the follow-
ing conventions:

times Vector giving the number of times to repeat each element if of length length(x),
or to repeat the whole vector if of length 1.

length.out Non-negative integer. The desired length of the output vector.
each Non-negative integer. Each element of x is repeated each times.

rev(x): Returns a new object of the same class as x made of the original elements in the reverse
order.

seqselect(x, start=NULL, end=NULL, width=NULL): Similar to window, except
that multiple consecutive subsequences can be requested for concatenation. As such two of
the three start, end, and width arguments can be used to specify the consecutive subse-
quences. Alternatively, start can take a Ranges object or something that can be converted
to a Ranges object like an integer vector, logical vector or logical Rle. If the concatenation of
the consecutive subsequences is undesirable, consider using Views.

seqselect(x, start=NULL, end=NULL, width=NULL) <- value: Similar to window<-
, except that multiple consecutive subsequences can be replaced by a value whose length is
a divisor of the number of elements it is replacing. As such two of the three start, end,
and width arguments can be used to specify the consecutive subsequences. Alternatively,
start can take a Ranges object or something that can be converted to a Ranges object like
an integer vector, logical vector or logical Rle.

subset(x, subset): Returns a new object of the same class as x made of the subset using
logical vector subset, where missing values are taken as FALSE.

tail(x, n = 6L): If n is non-negative, returns the last n elements of the GRanges object. If
n is negative, returns all but the first abs(n) elements of the GRanges object.

window(x, start = NA, end = NA, width = NA, frequency = NULL, delta
= NULL, ...): Extracts the subsequence window from the GRanges object using:

start, end, width The start, end, or width of the window. Two of the three are required.
frequency, delta Optional arguments that specify the sampling frequency and increment

within the window.

In general, this is more efficient than using "[" operator.

window(x, start = NA, end = NA, width = NA, keepLength = TRUE) <- value:
Replaces the subsequence window specified on the left (i.e. the subsequence in x specified by
start, end and width) by value. value must either be of class class(x), belong to a
subclass of class(x), be coercible to class(x), or be NULL. If keepLength is TRUE,
the elements of value are repeated to create a GRanges object with the same number of el-
ements as the width of the subsequence window it is replacing. If keepLength is FALSE,

20 GRangesList-class

this replacement method can modify the length of x, depending on how the length of the left
subsequence window compares to the length of value.

Looping

In the code snippets below, x is a GRangesList object.

endoapply(X, FUN, ...): Similar to lapply, but performs an endomorphism, i.e. re-
turns an object of class(X).

lapply(X, FUN, ...): Like the standard lapply function defined in the base package, the
lapply method for GRangesList objects returns a list of the same length as X, with each
element being the result of applying FUN to the corresponding element of X.

Map(f, ...): Applies a function to the corresponding elements of given GRangesList objects.

mapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE):
Like the standard mapply function defined in the base package, the mapply method for
GRangesList objects is a multivariate version of sapply.

mendoapply(FUN, ..., MoreArgs = NULL): Similar to mapply, but performs an en-
domorphism across multiple objects, i.e. returns an object of class(list(...)[[1]]).

Reduce(f, x, init, right = FALSE, accumulate = FALSE): Uses a binary func-
tion to successively combine the elements of x and a possibly given initial value.

f A binary argument function.

init An R object of the same kind as the elements of x.

right A logical indicating whether to proceed from left to right (default) or from right to left.

nomatch The value to be returned in the case when "no match" (no element satisfying the
predicate) is found.

sapply(X, FUN, ..., simplify=TRUE, USE.NAMES=TRUE): Like the standard sapply
function defined in the base package, the sapply method for GRangesList objects is a user-
friendly version of lapply by default returning a vector or matrix if appropriate.

The "reduce" method

In the code snippets below, x is a GRangesList object.

reduce(x, drop.empty.ranges=FALSE, min.gapwidth=1L): Reduces separately
each element in x and returns them in a GRangesList object with the same length & names
& elementMetadata & seqinfo as x. In other words, it is equivalent to endoapply(x,
reduce, drop.empty.ranges=drop.empty.ranges, min.gapwidth=min.gapwidth).

Author(s)

P. Aboyoun

See Also

GRanges-class, Seqinfo-class Sequence-class, RangesList-class, RleList-class, DataFrameList-class

GRanges-setops 21

Examples

Construction using GRangesList
gr1 <-
GRanges(seqnames = "chr2", ranges = IRanges(3, 6),

strand = "+", score = 5L, GC = 0.45)
gr2 <-
GRanges(seqnames = c("chr1", "chr1"),

ranges = IRanges(c(7,13), width = 3),
strand = c("+", "-"), score = 3:4, GC = c(0.3, 0.5))

gr3 <-
GRanges(seqnames = c("chr1", "chr2"),

ranges = IRanges(c(1, 4), c(3, 9)),
strand = c("-", "-"), score = c(6L, 2L), GC = c(0.4, 0.1))

grl <- GRangesList("gr1" = gr1, "gr2" = gr2, "gr3" = gr3)
grl

Summarizing elements
elementLengths(grl)
table(seqnames(grl))
coverage(grl)

Extracting subsets
grl[seqnames(grl) == "chr1",]
grl[seqnames(grl) == "chr1" & strand(grl) == "+",]

Changing sequence name
unique(seqnames(grl))
seqnames(grl) <- sub("chr", "Chrom", seqnames(grl))
grl

reduce():
reduce(grl) # Doesn't really reduce anything but note the reordering

of the inner elements in the 3rd top-level element: the
ranges are reordered by sequence name first (the order of
the sequence names is dictated by the sequence levels),
and then by strand.

GRanges-setops GRanges and GRangesList Set and Parallel Set Operations

Description

Set and parallel set operations for GRanges/GRangesList objects.

Usage

Set operations
S4 method for signature 'GRanges,GRanges':

union(x, y)
S4 method for signature 'GRanges,GRanges':

intersect(x, y)
S4 method for signature 'GRanges,GRanges':

setdiff(x, y)

22 GRanges-setops

Parallel set operations
S4 method for signature 'GRanges,GRanges':

punion(x, y, fill.gap = FALSE, ...)
S4 method for signature 'GRanges,GRanges':

pintersect(x, y, resolve.empty = c("none", "max.start", "start.x"), ...)
S4 method for signature 'GRanges,GRanges':

psetdiff(x, y, ...)

Arguments

x, y GRanges or GRangesList objects of equal length (i.e. length(x) == length(y)).
For union, intersect, setdiff, x and y must both be GRanges ob-
jects. For pintersect, x and y cannot both be GRangesList objects. For
psetdiff, x and must be a GRanges object.

fill.gap Logical indicating whether or not to force a union by using the rule start =
min(start(x), start(y)), end = max(end(x), end(y)).

resolve.empty
One of "none", "max.start", or "start.x" denoting how to handle am-
biguous empty ranges formed by intersections. "none" - throw an error if an
ambiguous empty range is formed, "max.start" - associate the maximum
start value with any ambiguous empty range, and "start.x" - associate the
start value of x with any ambiguous empty range. (See pintersect for the
definition of an ambiguous range.)

... Further arguments to be passed to or from other methods.

Details

The pintersect methods involving GRanges and GRangesList objects use the triplet (sequence
name, range, strand) to determine the element by element intersection of features, where a strand
value of "*" is treated as occurring on both the "+" and "-" strand.

The psetdiff methods involving GRanges and GRangesList objects use the triplet (sequence
name, range, strand) to determine the element by element set difference of features, where a strand
value of "*" is treated as occurring on both the "+" and "-" strand.

Value

For union, intersect, and setdiff a GRanges.

For punion and pintersect either a GRanges object when both x and y are GRanges objects
or a GRangesList object when one of the arguments is a GRangesList object.

For psetdiff either a GRanges object when both x and y are GRanges objects or a GRangesList
object when y is a GRangesList object.

Author(s)

P. Aboyoun

See Also

GRanges, GRangesList, findOverlaps,GenomicRanges,GenomicRanges-method, pintersect,GRanges,GRanges-
method

Seqinfo-class 23

Examples

GRanges object
gr <-
GRanges(seqnames = c("chr2", "chr1", "chr1"),

ranges = IRanges(1:3, width = 12),
strand = Rle(strand(c("-", "*", "-"))))

gr

GRangesList object
gr1 <-
GRanges(seqnames = "chr2", ranges = IRanges(3, 6),

strand = "+", score = 5L, GC = 0.45)
gr2 <-
GRanges(seqnames = c("chr1", "chr1"),

ranges = IRanges(c(7,13), width = 3),
strand = c("+", "-"), score = 3:4, GC = c(0.3, 0.5))

gr3 <-
GRanges(seqnames = c("chr1", "chr2"),

ranges = IRanges(c(1, 4), c(3, 9)),
strand = c("-", "-"), score = c(6L, 2L), GC = c(0.4, 0.1))

grlist <- GRangesList("gr1" = gr1, "gr2" = gr2, "gr3" = gr3)

Union, intersection, and set difference of two GRanges objects
union(gr2, gr3)
intersect(gr2, gr3)
setdiff(gr2, gr3)

Parallel intersection of two GRanges objects
pintersect(gr2, shift(gr2, 3))

Parallel intersection of a GRanges and a GRangesList object
pintersect(gr, grlist)
pintersect(grlist, gr)

Parallel set difference of two GRanges objects
psetdiff(gr2, shift(gr2, 3))

Parallel set difference of a GRanges and a GRangesList object
psetdiff(gr, grlist)

Seqinfo-class Seqinfo objects

Description

A Seqinfo object is a data.frame-like object that contains basic information about a set of genomic
sequences. Currently only the length and circularity flag of each sequence is stored but more infor-
mation might be added in the future.

Details

Typically Seqinfo objects are not used directly but are part of higher level objects.

24 seqnames

Constructor

Seqinfo(seqnames, seqlengths=NA, isCircular=NA): Creates a Seqinfo object.

Accessor methods

In the code snippets below, x is a Seqinfo object.

length(x): Gets the number of sequences in x.

seqnames(x), seqnames(x) <- value: Gets/sets the names of the sequences in x.

names(x), names(x) <- value: Same as seqnames(x) and seqnames(x) <- value.

seqlengths(x), seqlengths(x) <- value: Gets/sets the lengths of the sequences in x.

isCircular(x), isCircular(x) <- value: Gets/sets the circularity flags of the se-
quences in x.

isCircularWithKnownLength(x): Formally defined as (isCircular(x) %in% TRUE)
& !is.na(seqlengths(x)).

Coercion

In the code snippets below, x is a Seqinfo object.

as.data.frame(x): Turns x into a data frame.

Author(s)

H. Pages

Examples

Coming soon...

seqnames Accessing the sequence names and lengths stored in an object

Description

The seqnames and seqlengths generics are meant as accessors for the sequence names and
lengths stored in an object, respectively.

Usage

seqnames(x)
seqlengths(x)

Arguments

x The object from which to access the sequence information.

strand 25

Details

Various classes provide seqnames and seqlengths methods for getting or setting the sequence
names and lengths of an object of the class, respectively.

See for example ¿seqnames,GRanges-method‘ for the GRanges class and ¿seqnames,GRangesList-
method‘ for the GRangesList class, both classes being defined in the GenomicRanges package.

For more examples see ¿seqnames,BSgenome-method‘ for the BSgenome class defined in
the BSgenome package and ¿seqnames,TranscriptDb-method‘ for the TranscriptDb class
defined in the GenomicFeatures package (you might need to install and load these packages first).

The full list can be seen with showMethods("seqnames") and showMethods("seqlengths")
(for the get methods) and showMethods("seqnames<-") and showMethods("seqlengths<-
") (for the replacement methods).

See Also

seqnames,GRanges-method, seqnames,GRangesList-method, seqnames,BSgenome-method seqnames,TranscriptDb-
method

Examples

showMethods("seqnames")
showMethods("seqnames<-")

showMethods("seqlengths")
showMethods("seqlengths<-")

if (interactive())
?`seqnames,GRanges-method`

strand Accessing strand information

Description

The strand generic is meant as an accessor for strand information. Four methods are defined by
the GenomicRanges package, described below.

Usage

strand(x)

Arguments

x The object from which to obtain a strand factor, can be missing.

26 SummarizedExperiment-class

Details

If x is missing, returns an empty factor with the standard levels that any strand factor should have:
+, -, and * (for either).

If x is a character vector or factor, it is coerced to a factor with the levels listed above.

If x is an integer vector, it is coerced to a factor with the levels listed above. 1 and -1 values in x
are mapped to the + and - levels respectively. NAs in x produce NAs in the result.

If x is a logical vector, it is coerced to a factor with the levels listed above. FALSE and TRUE values
in x are mapped to the + and - levels respectively. NAs in x produce NAs in the result.

If x inherits from DataTable, the "strand" column is returned as a factor with the levels listed
above. If x has no "strand" column, this return value is populated with NAs.

Author(s)

Michael Lawrence

Examples

strand()
strand(c("+", "-", NA, "*"))
strand(c(-1L, 1L, NA, -1L, NA))
strand(c(FALSE, FALSE, TRUE, NA, TRUE, FALSE))

SummarizedExperiment-class
SummarizedExperiment instances

Description

The SummarizedExperiment class is an eSet-like container where rows represent ranges of inter-
est (as a GRanges-class) and columns represent samples (with sample data summarized as a
DataFrame-class). A SummarizedExperiment contains one or more assays, each repre-
sented by a matrix of numeric or other mode.

Usage

Constructors

SummarizedExperiment(assays, ...)
S4 method for signature 'SimpleList':
SummarizedExperiment(assays, rowData = GRanges(),

colData = DataFrame(), exptData = SimpleList(), ...,
verbose = FALSE)

S4 method for signature 'missing':
SummarizedExperiment(assays, ...)
S4 method for signature 'list':
SummarizedExperiment(assays, ...)
S4 method for signature 'matrix':
SummarizedExperiment(assays, ...)

SummarizedExperiment-class 27

Accessors

assays(x, ..., withDimnames=TRUE)
assays(x, ...) <- value
assay(x, i, ...)
assay(x, i, ...) <- value
rowData(x, ...)
rowData(x, ...) <- value
colData(x, ...)
colData(x, ...) <- value
exptData(x, ...)
exptData(x, ...) <- value
S4 method for signature 'SummarizedExperiment':
dim(x)
S4 method for signature 'SummarizedExperiment':
dimnames(x)
S4 method for signature 'SummarizedExperiment,NULL':
dimnames(x) <- value
S4 method for signature 'SummarizedExperiment,list':
dimnames(x) <- value

Subsetting

S4 method for signature 'SummarizedExperiment':
[(x, i, j, ..., drop=TRUE)
S4 method for signature 'SummarizedExperiment,ANY,ANY,SummarizedExperiment':
[(x, i, j) <- value

Arguments

assays A list or SimpleList of matrix elements, or a matrix. Each element of
the list must have the same dimensions, and dimension names (if present) must
be consistent across elements and with the row names of rowData, colData.

rowData A GRanges instance describing the ranges of interest. Row names, if present,
become the row names of the SummarizedExperiment.

colData An optional DataFrame describing the samples. Row names, if present, be-
come the column names of the SummarizedExperiment.

exptData An optional SimpleList of arbitrary content describing the overall experi-
ment.

... For SummarizedExperiment, S4 methods list and matrix, arguments
identical to those of the SimpleList method.
For assay, ... may contain withNames, which is forwarded to assays.
For other accessors, ignored.

verbose A logical(1) indicating whether messages about data coercion during con-
struction should be printed.

x An instance of SummarizedExperiment-class.

i, j For assay, assay<-, i is a integer or numeric scalar; see ‘Details’ for addi-
tional constraints.

28 SummarizedExperiment-class

For SummarizedExperiment, SummarizedExperiment<-, i, j are
instances that can act to subset the underlying rowData, colData, and matrix
elements of assays.

withDimnames A logical(1), indicating whether dimnames should be applied to extracted
assay elements.

drop A logical(1), ignored by these methods.
value An instance of a class specified in the S4 method signature or as outlined in

‘Details’.

Details

The SummarizedExperiment class is meant for numeric and other data types derived from a
sequencing experiment. The structure is rectangular, like an eSet in Biobase.

The rows of a SummarizedExperiment instance represent ranges (in genomic coordinates) of
interest. The ranges of interest are described by a GRanges-class instance, accessible using the
rowData function, described below. The GRanges class contains sequence (e.g., chromosome)
name, genomic coordinates, and strand information. Each range can be annotated with additional
data; this data might be used to describe the range (analogous to annotations associated with genes
in a eSet) or to summarize results (e.g., statistics of differential abundance) relevant to the range.
Rows may or may not have row names; they often will not.

Each column of a SummarizedExperiment instance represents a sample. Information about
the samples are stored in a DataFrame-class, accessible using the function colData, de-
scribed below. The DataFramemust have as many rows as there are columns in the SummarizedExperiment,
with each row of the DataFrame providing information on the sample in the corresponding col-
umn of the SummarizedExperiment. Columns of the DataFrame represent different sample
attributes, e.g., tissue of origin, etc. Columns of the DataFrame can themselves be annotated
(via the values function) in a fashion similar to the varMetadata facilities of the eSet class.
Column names typically provide a short identifier unique to each sample.

A SummarizedExperiment can also contain information about the overall experiment, for in-
stance the lab in which it was conducted, the publications with which it is associated, etc. This
information is stored as a SimpleList-class, accessible using the exptData function. The
form of the data associated with the experiment is left to the discretion of the user.

The SummarizedExperiment is appropriate for matrix-like data. The data are accessed using
the assays function, described below. This returns a SimpleList-class instance. Each element
of the list must itself be a matrix (of any mode) and must have dimensions that are the same as the
dimensions of the SummarizedExperiment in which they are stored. Row and column names
of each matrix must either be NULL or match those of the SummarizedExperiment during
construction. It is convenient for the elements of SimpleList of assays to be named.

The SummarizedExperiment class has the following slots; this detail of class structure is not
relevant to the user.

exptData A SimpleList-class instance containing information about the overall experiment.
rowData A GRanges-class instance defining the ranges of interest and associated metadata.
colData A DataFrame-class instance describing the samples and associated metadata.
assays A SimpleList-class instance, each element of which is a matrix summarizing data associ-

ated with the corresponding range and sample.

Constructor

Instances are constructed using the SummarizedExperiment function with arguments outlined
above.

SummarizedExperiment-class 29

Accessors

In the following code snippets, x is a SummarizedExperiment instance.

assays(x), assays(x) <- value: Get or set the assays. value is a list or SimpleList,
each element of which is a matrix with the same dimensions as x.

assay(x, i), assay(x, i) <- value: A convenient alternative (to assays(x)[[i]],
assays(x)[[i]] <- value) to get or set the ith (default first) assay element. value
must be a matrix of the same dimension as x, and with dimension names NULL or consistent
with those of x.

rowData(x), rowData(x) <- value: Get or set the row data. value is a GenomicRanges
instance. Row names of value must be NULL or consistent with the existing row names of
x.

colData(x), colData(x) <- value: Get or set the column data. value is a DataFrame
instance. Row names of value must be NULL or consistent with the existing column names
of x.

exptData(x), exptData(x) <- value: Get or set the experiment data. value is a list
or SimpleList instance, with arbitrary content.

dim(x): Get the dimensions (ranges x samples) of the SummarizedExperiment.

dimnames(x), dimnames(x) <- value: Get or set the dimension names. value is usu-
ally a list of length 2, containing elements that are either NULL or vectors of appropriate length
for the corresponding dimension. value can be NULL, which removes dimension names.
This method implies that rownames, rownames<-, colnames, and colnames<- are
all available.

Subsetting

In the code snippets below, x is a SummarizedExperiment instance.

x[i,j], x[i,j] <- value: Create or replace a subset of x. i, j can be numeric, logical,
character, or missing. value must be a SummarizedExperiment instance with
dimensions, dimension names, and assay elements consistent with the subset x[i,j] being
replaced.

Author(s)

Martin Morgan, mtmorgan@fhcrc.org

See Also

GRanges, DataFrame, SimpleList,

Examples

nrows <- 200; ncols <- 6
counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)
rowData <- GRanges(rep(c("chr1", "chr2"), c(50, 150)),

IRanges(floor(runif(200, 1e5, 1e6)), width=100),
strand=sample(c("+", "-"), 200, TRUE))

colData <- DataFrame(Treatment=rep(c("ChIP", "Input"), 3),
row.names=LETTERS[1:6])

sset <- SummarizedExperiment(assays=SimpleList(counts=counts),
rowData=rowData, colData=colData)

mtmorgan@fhcrc.org

30 SummarizedExperiment-class

sset
assays(sset) <- endoapply(assays(sset), asinh)
head(assay(sset))

Index

∗Topic classes
GappedAlignments-class, 8
Seqinfo-class, 23

∗Topic manip
cigar-utils, 1

∗Topic methods
GappedAlignments-class, 8
GRanges-findOverlaps, 5
GRanges-setops, 21
Seqinfo-class, 23
seqnames, 24
strand, 25

∗Topic utilities
GRanges-findOverlaps, 5
GRanges-setops, 21

[,GRangesList-method
(GRangesList-class), 17

[,GappedAlignments-method
(GappedAlignments-class), 8

[,GenomicRanges-method
(GRanges-class), 13

[,SummarizedExperiment-method
(SummarizedExperiment-class),
26

[<-,GRangesList,ANY,ANY,ANY-method
(GRangesList-class), 17

[<-,GenomicRanges,ANY,ANY,ANY-method
(GRanges-class), 13

[<-,SummarizedExperiment,ANY,ANY,SummarizedExperiment-method
(SummarizedExperiment-class),
26

[[<-,GRangesList-method
(GRangesList-class), 17

%in%,ANY,GappedAlignments-method
(GappedAlignments-class), 8

%in%,GRangesList,GRangesList-method
(GRanges-findOverlaps), 5

%in%,GRangesList,GenomicRanges-method
(GRanges-findOverlaps), 5

%in%,GRangesList,RangedData-method
(GRanges-findOverlaps), 5

%in%,GRangesList,RangesList-method
(GRanges-findOverlaps), 5

%in%,GappedAlignments,ANY-method
(GappedAlignments-class), 8

%in%,GappedAlignments,GappedAlignments-method
(GappedAlignments-class), 8

%in%,GenomicRanges,GRangesList-method
(GRanges-findOverlaps), 5

%in%,GenomicRanges,GenomicRanges-method
(GRanges-findOverlaps), 5

%in%,GenomicRanges,RangedData-method
(GRanges-findOverlaps), 5

%in%,GenomicRanges,RangesList-method
(GRanges-findOverlaps), 5

%in%,RangedData,GRangesList-method
(GRanges-findOverlaps), 5

%in%,RangedData,GenomicRanges-method
(GRanges-findOverlaps), 5

%in%,RangesList,GRangesList-method
(GRanges-findOverlaps), 5

%in%,RangesList,GenomicRanges-method
(GRanges-findOverlaps), 5

as.data.frame,GappedAlignments-method
(GappedAlignments-class), 8

as.data.frame,GenomicRanges-method
(GRanges-class), 13

as.data.frame,GRangesList-method
(GRangesList-class), 17

as.data.frame,Seqinfo-method
(Seqinfo-class), 23

assay
(SummarizedExperiment-class),
26

assay,SummarizedExperiment,ANY-method
(SummarizedExperiment-class),
26

assay,SummarizedExperiment,character-method
(SummarizedExperiment-class),
26

assay,SummarizedExperiment,missing-method
(SummarizedExperiment-class),
26

assay,SummarizedExperiment,numeric-method
(SummarizedExperiment-class),
26

31

32 INDEX

assay<-
(SummarizedExperiment-class),
26

assay<-,SummarizedExperiment,character,matrix-method
(SummarizedExperiment-class),
26

assay<-,SummarizedExperiment,missing,matrix-method
(SummarizedExperiment-class),
26

assay<-,SummarizedExperiment,numeric,matrix-method
(SummarizedExperiment-class),
26

assays
(SummarizedExperiment-class),
26

assays,SummarizedExperiment-method
(SummarizedExperiment-class),
26

assays<-
(SummarizedExperiment-class),
26

assays<-,SummarizedExperiment,list-method
(SummarizedExperiment-class),
26

assays<-,SummarizedExperiment,SimpleList-method
(SummarizedExperiment-class),
26

BSgenome, 25

c,GenomicRanges-method
(GRanges-class), 13

cigar (GappedAlignments-class), 8
cigar,GappedAlignments-method

(GappedAlignments-class), 8
cigar-utils, 1
cigarNarrow (cigar-utils), 1
cigarOpTable (cigar-utils), 1
cigarQNarrow (cigar-utils), 1
cigarToCigarTable (cigar-utils), 1
cigarToIRanges (cigar-utils), 1
cigarToIRangesListByAlignment

(cigar-utils), 1
cigarToIRangesListByRName

(cigar-utils), 1
cigarToQWidth (cigar-utils), 1
cigarToRleList (cigar-utils), 1
cigarToWidth (cigar-utils), 1
class:GappedAlignments

(GappedAlignments-class), 8
class:GenomicRanges

(GRanges-class), 13
class:GRanges (GRanges-class), 13

class:GRangesList
(GRangesList-class), 17

class:Seqinfo (Seqinfo-class), 23
coerce,GenomicRanges,RangedData-method

(GRanges-class), 13
coerce,GenomicRanges,RangesList-method

(GRanges-class), 13
coerce,RangedData,GRanges-method

(GRanges-class), 13
coerce,RangedDataList,GRangesList-method

(GRangesList-class), 17
coerce,RangesList,GRanges-method

(GRanges-class), 13
colData

(SummarizedExperiment-class),
26

colData,SummarizedExperiment-method
(SummarizedExperiment-class),
26

colData<-
(SummarizedExperiment-class),
26

colData<-,SummarizedExperiment,DataFrame-method
(SummarizedExperiment-class),
26

CompressedNormalIRangesList, 3, 9
CompressedNormalIRangesList-class,

11
CompressedRleList, 3
countOverlaps,ANY,GappedAlignments-method

(GappedAlignments-class), 8
countOverlaps,GappedAlignments,ANY-method

(GappedAlignments-class), 8
countOverlaps,GappedAlignments,GappedAlignments-method

(GappedAlignments-class), 8
countOverlaps,GenomicRanges,GenomicRanges-method

(GRanges-findOverlaps), 5
countOverlaps,GenomicRanges,GRangesList-method

(GRanges-findOverlaps), 5
countOverlaps,GenomicRanges,RangedData-method

(GRanges-findOverlaps), 5
countOverlaps,GenomicRanges,RangesList-method

(GRanges-findOverlaps), 5
countOverlaps,GRangesList,GenomicRanges-

method,
11

countOverlaps,GRangesList,GenomicRanges-method,
11

countOverlaps,GRangesList,GenomicRanges-method
(GRanges-findOverlaps), 5

countOverlaps,GRangesList,GRangesList-method
(GRanges-findOverlaps), 5

INDEX 33

countOverlaps,GRangesList,RangedData-method
(GRanges-findOverlaps), 5

countOverlaps,GRangesList,RangesList-method
(GRanges-findOverlaps), 5

countOverlaps,RangedData,GenomicRanges-method
(GRanges-findOverlaps), 5

countOverlaps,RangedData,GRangesList-method
(GRanges-findOverlaps), 5

countOverlaps,RangesList,GenomicRanges-method
(GRanges-findOverlaps), 5

countOverlaps,RangesList,GRangesList-method
(GRanges-findOverlaps), 5

coverage, 3, 11, 15, 18
coverage,GappedAlignments-method

(GappedAlignments-class), 8
coverage,GenomicRanges-method

(GRanges-class), 13
coverage,GRangesList-method

(GRangesList-class), 17

DataFrame, 2, 3, 13, 26, 28, 29
DataFrame-class, 16
DataFrameList-class, 20
dim,SummarizedExperiment-method

(SummarizedExperiment-class),
26

dimnames,SummarizedExperiment-method
(SummarizedExperiment-class),
26

dimnames<-,SummarizedExperiment,list-method
(SummarizedExperiment-class),
26

dimnames<-,SummarizedExperiment,NULL-method
(SummarizedExperiment-class),
26

disjoin,GenomicRanges-method
(GRanges-class), 13

elementMetadata,GenomicRanges-method
(GRanges-class), 13

elementMetadata,GRangesList-method
(GRangesList-class), 17

elementMetadata<-,GenomicRanges-method
(GRanges-class), 13

elementMetadata<-,GRangesList-method
(GRangesList-class), 17

end,GappedAlignments-method
(GappedAlignments-class), 8

end,GenomicRanges-method
(GRanges-class), 13

end,GRangesList-method
(GRangesList-class), 17

end<-,GenomicRanges-method
(GRanges-class), 13

end<-,GRangesList-method
(GRangesList-class), 17

exptData
(SummarizedExperiment-class),
26

exptData,SummarizedExperiment-method
(SummarizedExperiment-class),
26

exptData<-
(SummarizedExperiment-class),
26

exptData<-,SummarizedExperiment,list-method
(SummarizedExperiment-class),
26

exptData<-,SummarizedExperiment,SimpleList-method
(SummarizedExperiment-class),
26

findOverlaps, 7
findOverlaps,ANY,GappedAlignments-method

(GappedAlignments-class), 8
findOverlaps,GappedAlignments,ANY-method

(GappedAlignments-class), 8
findOverlaps,GappedAlignments,GappedAlignments-method

(GappedAlignments-class), 8
findOverlaps,GenomicRanges,GenomicRanges-method,

22
findOverlaps,GenomicRanges,GenomicRanges-method

(GRanges-findOverlaps), 5
findOverlaps,GenomicRanges,GRangesList-method

(GRanges-findOverlaps), 5
findOverlaps,GenomicRanges,RangedData-method

(GRanges-findOverlaps), 5
findOverlaps,GenomicRanges,RangesList-method

(GRanges-findOverlaps), 5
findOverlaps,GRangesList,GenomicRanges-

method,
10

findOverlaps,GRangesList,GenomicRanges-method,
11

findOverlaps,GRangesList,GenomicRanges-method
(GRanges-findOverlaps), 5

findOverlaps,GRangesList,GRangesList-method
(GRanges-findOverlaps), 5

findOverlaps,GRangesList,RangedData-method
(GRanges-findOverlaps), 5

findOverlaps,GRangesList,RangesList-method
(GRanges-findOverlaps), 5

findOverlaps,RangedData,GenomicRanges-method
(GRanges-findOverlaps), 5

34 INDEX

findOverlaps,RangedData,GRangesList-method
(GRanges-findOverlaps), 5

findOverlaps,RangesList,GenomicRanges-method
(GRanges-findOverlaps), 5

findOverlaps,RangesList,GRangesList-method
(GRanges-findOverlaps), 5

flank,GenomicRanges-method
(GRanges-class), 13

GappedAlignments
(GappedAlignments-class), 8

GappedAlignments-class, 8
gaps, 15
gaps,GenomicRanges-method

(GRanges-class), 13
GenomicRanges (GRanges-class), 13
GenomicRanges-class

(GRanges-class), 13
GRanges, 6, 7, 9, 22, 25, 26, 28, 29
GRanges (GRanges-class), 13
GRanges-class, 13, 20
GRanges-findOverlaps, 5
GRanges-setops, 21
GRangesList, 6, 7, 9, 15, 22, 25
GRangesList (GRangesList-class),

17
GRangesList-class, 11, 16, 17
grg (GappedAlignments-class), 8
grg,GappedAlignments-method

(GappedAlignments-class), 8
grglist (GappedAlignments-class),

8
grglist,GappedAlignments-method

(GappedAlignments-class), 8

intersect,GRanges,GRanges-method
(GRanges-setops), 21

IRanges, 2, 3, 13, 15, 18
IRanges-class, 3
IRangesList, 3
IRangesList-class, 3
isCircular (Seqinfo-class), 23
isCircular,GenomicRanges-method

(GRanges-class), 13
isCircular,GRangesList-method

(GRangesList-class), 17
isCircular,Seqinfo-method

(Seqinfo-class), 23
isCircular<- (Seqinfo-class), 23
isCircular<-,Seqinfo-method

(Seqinfo-class), 23
isCircularWithKnownLength

(Seqinfo-class), 23

isCircularWithKnownLength,GenomicRanges-method
(GRanges-class), 13

isCircularWithKnownLength,GRangesList-method
(GRangesList-class), 17

isCircularWithKnownLength,Seqinfo-method
(Seqinfo-class), 23

lapply, 20
length,GappedAlignments-method

(GappedAlignments-class), 8
length,GenomicRanges-method

(GRanges-class), 13
length,Seqinfo-method

(Seqinfo-class), 23

mapply, 20
match,ANY,GappedAlignments-method

(GappedAlignments-class), 8
match,GappedAlignments,ANY-method

(GappedAlignments-class), 8
match,GappedAlignments,GappedAlignments-method

(GappedAlignments-class), 8
match,GenomicRanges,GenomicRanges-method

(GRanges-findOverlaps), 5
match,GenomicRanges,GRangesList-method

(GRanges-findOverlaps), 5
match,GenomicRanges,RangedData-method

(GRanges-findOverlaps), 5
match,GenomicRanges,RangesList-method

(GRanges-findOverlaps), 5
match,GRangesList,GenomicRanges-method

(GRanges-findOverlaps), 5
match,GRangesList,GRangesList-method

(GRanges-findOverlaps), 5
match,GRangesList,RangedData-method

(GRanges-findOverlaps), 5
match,GRangesList,RangesList-method

(GRanges-findOverlaps), 5
match,RangedData,GenomicRanges-method

(GRanges-findOverlaps), 5
match,RangedData,GRangesList-method

(GRanges-findOverlaps), 5
match,RangesList,GenomicRanges-method

(GRanges-findOverlaps), 5
match,RangesList,GRangesList-method

(GRanges-findOverlaps), 5

names,GenomicRanges-method
(GRanges-class), 13

names,Seqinfo-method
(Seqinfo-class), 23

names<-,GenomicRanges-method
(GRanges-class), 13

INDEX 35

names<-,Seqinfo-method
(Seqinfo-class), 23

narrow,GappedAlignments-method
(GappedAlignments-class), 8

NormalIRanges-class, 11

pintersect, 22
pintersect,GappedAlignments,GRanges-method

(GappedAlignments-class), 8
pintersect,GRanges,GappedAlignments-method

(GappedAlignments-class), 8
pintersect,GRanges,GRanges-method,

11, 22
pintersect,GRanges,GRanges-method

(GRanges-setops), 21
pintersect,GRanges,GRangesList-method

(GRanges-setops), 21
pintersect,GRangesList,GRanges-method

(GRanges-setops), 21
psetdiff,GRanges,GRanges-method

(GRanges-setops), 21
psetdiff,GRanges,GRangesList-method

(GRanges-setops), 21
punion,GRanges,GRanges-method

(GRanges-setops), 21
punion,GRanges,GRangesList-method

(GRanges-setops), 21
punion,GRangesList,GRanges-method

(GRanges-setops), 21

qnarrow (GappedAlignments-class),
8

qnarrow,GappedAlignments-method
(GappedAlignments-class), 8

queryLoc2refLoc (cigar-utils), 1
queryLocs2refLocs (cigar-utils), 1
qwidth (GappedAlignments-class), 8
qwidth,GappedAlignments-method

(GappedAlignments-class), 8

range,GenomicRanges-method
(GRanges-class), 13

RangedData, 6
Ranges, 10
ranges,GRanges-method

(GRanges-class), 13
ranges,GRangesList-method

(GRangesList-class), 17
Ranges-class, 16
ranges<-,GenomicRanges-method

(GRanges-class), 13
ranges<-,GRangesList-method

(GRangesList-class), 17

RangesList, 6
RangesList-class, 20
RangesMatching, 6
readBamGappedAlignments, 9, 11
readGappedAlignments

(GappedAlignments-class), 8
reduce, 15
reduce,GenomicRanges-method

(GRanges-class), 13
reduce,GRangesList-method

(GRangesList-class), 17
resize,GenomicRanges-method

(GRanges-class), 13
rev,GenomicRanges-method

(GRanges-class), 13
rglist (GappedAlignments-class), 8
rglist,GappedAlignments-method

(GappedAlignments-class), 8
Rle, 13
Rle-class, 16
RleList, 10, 15, 18
RleList-class, 3, 11, 20
rname (GappedAlignments-class), 8
rname,GappedAlignments-method

(GappedAlignments-class), 8
rname<- (GappedAlignments-class),

8
rname<-,GappedAlignments-method

(GappedAlignments-class), 8
rowData

(SummarizedExperiment-class),
26

rowData,SummarizedExperiment-method
(SummarizedExperiment-class),
26

rowData<-
(SummarizedExperiment-class),
26

rowData<-,SummarizedExperiment,GenomicRanges-method
(SummarizedExperiment-class),
26

sapply, 20
Seqinfo, 14, 18
Seqinfo (Seqinfo-class), 23
seqinfo (GRanges-class), 13
seqinfo,GRanges-method

(GRanges-class), 13
seqinfo,GRangesList-method

(GRangesList-class), 17
Seqinfo-class, 16, 20, 23
seqlengths (seqnames), 24

36 INDEX

seqlengths,GappedAlignments-method
(GappedAlignments-class), 8

seqlengths,GenomicRanges-method
(GRanges-class), 13

seqlengths,GRangesList-method
(GRangesList-class), 17

seqlengths,Seqinfo-method
(Seqinfo-class), 23

seqlengths<- (seqnames), 24
seqlengths<-,GappedAlignments-method

(GappedAlignments-class), 8
seqlengths<-,GenomicRanges-method

(GRanges-class), 13
seqlengths<-,GRangesList-method

(GRangesList-class), 17
seqlengths<-,Seqinfo-method

(Seqinfo-class), 23
seqnames, 24
seqnames,BSgenome-method, 25
seqnames,BSgenome-method, 25
seqnames,GappedAlignments-method

(GappedAlignments-class), 8
seqnames,GRanges-method, 25
seqnames,GRanges-method, 25
seqnames,GRanges-method

(GRanges-class), 13
seqnames,GRangesList-method, 25
seqnames,GRangesList-method, 25
seqnames,GRangesList-method

(GRangesList-class), 17
seqnames,Seqinfo-method

(Seqinfo-class), 23
seqnames,TranscriptDb-method, 25
seqnames,TranscriptDb-method, 25
seqnames<- (seqnames), 24
seqnames<-,GappedAlignments-method

(GappedAlignments-class), 8
seqnames<-,GenomicRanges-method

(GRanges-class), 13
seqnames<-,GRangesList-method

(GRangesList-class), 17
seqnames<-,Seqinfo-method

(Seqinfo-class), 23
seqselect,GenomicRanges-method

(GRanges-class), 13
seqselect<-,GenomicRanges-method

(GRanges-class), 13
Sequence-class, 16, 20
setdiff,GRanges,GRanges-method

(GRanges-setops), 21
shift,GenomicRanges-method

(GRanges-class), 13

shift,GRangesList-method
(GRangesList-class), 17

show,GappedAlignments-method
(GappedAlignments-class), 8

show,GenomicRanges-method
(GRanges-class), 13

show,GRangesList-method
(GRangesList-class), 17

show,Seqinfo-method
(Seqinfo-class), 23

show,SummarizedExperiment-method
(SummarizedExperiment-class),
26

SimpleList, 28, 29
solveUserSEW, 2, 10
split,GRanges-method

(GRanges-class), 13
splitCigar (cigar-utils), 1
start,GappedAlignments-method

(GappedAlignments-class), 8
start,GenomicRanges-method

(GRanges-class), 13
start,GRangesList-method

(GRangesList-class), 17
start<-,GenomicRanges-method

(GRanges-class), 13
start<-,GRangesList-method

(GRangesList-class), 17
strand, 13, 25
strand,character-method (strand),

25
strand,DataTable-method (strand),

25
strand,factor-method (strand), 25
strand,GappedAlignments-method

(GappedAlignments-class), 8
strand,GRanges-method

(GRanges-class), 13
strand,GRangesList-method

(GRangesList-class), 17
strand,integer-method (strand), 25
strand,logical-method (strand), 25
strand,missing-method (strand), 25
strand-methods (strand), 25
strand<- (strand), 25
strand<-,GenomicRanges-method

(GRanges-class), 13
strand<-,GRangesList-method

(GRangesList-class), 17
subsetByOverlaps,ANY,GappedAlignments-method

(GappedAlignments-class), 8
subsetByOverlaps,GappedAlignments,ANY-method

INDEX 37

(GappedAlignments-class), 8
subsetByOverlaps,GappedAlignments,GappedAlignments-method

(GappedAlignments-class), 8
subsetByOverlaps,GenomicRanges,GenomicRanges-method

(GRanges-findOverlaps), 5
subsetByOverlaps,GenomicRanges,GRangesList-method

(GRanges-findOverlaps), 5
subsetByOverlaps,GenomicRanges,RangedData-method

(GRanges-findOverlaps), 5
subsetByOverlaps,GenomicRanges,RangesList-method

(GRanges-findOverlaps), 5
subsetByOverlaps,GRangesList,GenomicRanges-

method,
11

subsetByOverlaps,GRangesList,GenomicRanges-method,
11

subsetByOverlaps,GRangesList,GenomicRanges-method
(GRanges-findOverlaps), 5

subsetByOverlaps,GRangesList,GRangesList-method
(GRanges-findOverlaps), 5

subsetByOverlaps,GRangesList,RangedData-method
(GRanges-findOverlaps), 5

subsetByOverlaps,GRangesList,RangesList-method
(GRanges-findOverlaps), 5

subsetByOverlaps,RangedData,GenomicRanges-method
(GRanges-findOverlaps), 5

subsetByOverlaps,RangedData,GRangesList-method
(GRanges-findOverlaps), 5

subsetByOverlaps,RangesList,GenomicRanges-method
(GRanges-findOverlaps), 5

subsetByOverlaps,RangesList,GRangesList-method
(GRanges-findOverlaps), 5

summarizeCigarTable
(cigar-utils), 1

SummarizedExperiment
(SummarizedExperiment-class),
26

SummarizedExperiment,list-method
(SummarizedExperiment-class),
26

SummarizedExperiment,matrix-method
(SummarizedExperiment-class),
26

SummarizedExperiment,missing-method
(SummarizedExperiment-class),
26

SummarizedExperiment,SimpleList-method
(SummarizedExperiment-class),
26

SummarizedExperiment-class, 26

TranscriptDb, 25

union,GRanges,GRanges-method
(GRanges-setops), 21

unlist,GRangesList-method
(GRangesList-class), 17

updateObject,GRanges-method
(GRanges-class), 13

updateObject,GRangesList-method
(GRangesList-class), 17

validCigar (cigar-utils), 1
values, 28
Views, 16, 19

width,GappedAlignments-method
(GappedAlignments-class), 8

width,GenomicRanges-method
(GRanges-class), 13

width,GRangesList-method
(GRangesList-class), 17

width<-,GenomicRanges-method
(GRanges-class), 13

width<-,GRangesList-method
(GRangesList-class), 17

window,GenomicRanges-method
(GRanges-class), 13

	cigar-utils
	GRanges-findOverlaps
	GappedAlignments-class
	GRanges-class
	GRangesList-class
	GRanges-setops
	Seqinfo-class
	seqnames
	strand
	SummarizedExperiment-class
	Index

