
DESeq
April 20, 2011

adjustScvForBias Adjust an SCV value for the bias arising when it is calculated from
unbiased estimates of mean and variance.

Description

Assume that a small sample of i.i.d. random variables from a negative binomial distribution is
given, and you have obtained unbiased estimates of mean and raw variance. Then, a new bias
is introduced when the squared coefficient of variation (SCV) is calculated from these unbiased
estimates by dividing the raw variance by the square of the mean. This bias can be calculated by
numerical simulation and a pre-calculated adjustment table (or rather a fit through tabulated values)
is supplied with the package. The present function uses this to remove the bias from a raw SCV
estimate.

This function is used internally in nbinomTest. You will rarely need to call it directly.

Usage

adjustScvForBias(scv, nsamples)

Arguments

scv An estimate for the raw squared coefficient of variation (SCV) for negative bi-
nomially distributed data, which has been obtained by dividing an unbiased es-
timate of the raw variance by the square of an unbiased estimate of the mean.

nsamples The size of the sample used in the estimation.

Value

an unbiased estimate of the raw SCV

Author(s)

Simon Anders

1

2 CountDataSet-class

Examples

true_mean <- 100
true_scv <- .1
nsamples <- 3
res <- replicate(1000, {

mySample <- rnbinom(nsamples, mu=true_mean, size=1/true_scv)
mu_est <- mean(mySample)
raw_var_est <- var(mySample) - mean(mySample)
raw_scv_est <- raw_var_est / mu_est^2
unbiased_raw_scv_est <- adjustScvForBias(raw_scv_est, 4)
c(raw_scv_est = raw_scv_est, unbiased_raw_scv_est = unbiased_raw_scv_est) })

rowMeans(res)

conditions Accessor function for the conditions information in a CountDataSet

Description

The conditions vector is a factor that assigns to each column of the count data a condition (or
treatment, or phenotype, or the like). This information is stored in the CountDataSet’s "phenoData"
slot as a row named "condition".

Usage

conditions(cds)

Arguments

cds a CountDataSet

Author(s)

Simon Anders, sanders@fs.tum.de

Examples

cds <- makeExampleCountDataSet()
conditions(cds)

CountDataSet-class Class "CountDataSet" – a container for count data from HTS experi-
ments

Description

This is the main class for the present package.

Objects from the Class

Objects should be created with calls to newCountDataSet (q.v.).

counts 3

Extends

Class eSet (package ’Biobase’), directly. Class VersionedBiobase (package ’Biobase’), by
class "eSet", distance 2. Class Versioned (package ’Biobase’), by class "eSet", distance 3.

Note

Note: This is a summary for reference. For an explanation of the actual usage, see the vignette.

A CountDataSet object stores counts from an HTS data set and offers further slots which are popu-
lated during the analysis.

After creation with newCountDataSet, a CountDataSet typically contains a count table, i.e., a
matrix of integer data, that is accessible with the accessor function counts. Each row of the matrix
corresponds to a gene (or binding region, or the like), and each colum to an experimental sample.
The experimental conditions of the samples are stored in a factor (with one element for each row of
the counts matrix), which can be read with the accessor function conditions.

In the following analysis steps, further data slots are populated. First, the size factors can be es-
timated with estimateSizeFactors, which are afterwards accessible via sizeFactors.
Then, the variance functions are estimated with estimateVarianceFunctions. The result-
ing estimates are accessible via the function rawVarFunc.

Internally, the mentioned data is stored in slots as follows:

As CountDataSet is derived from eSet, it has a phenoData slots which allows to store sam-
ple annotation. This is used to store the factor with the conditions, as a data frame column named
condition, and to store the size factors, as an numeric data frame column named sizeFactor.
The user may add further columns to the phenoData AnnotatedDataFrame.

The counts table is stored in the eSet’s assayData locked environment with the name counts.

The fits calculated by estimateVarianceFunctions are stored as closures in an environ-
ment, which is part of the object as slot rawVarFuncs. The assignment of the closures’ names
in the environment to the condition names is stored in as the first column (named "funcName") of
the data freame in the slot rawVarFuncTable. The second column ("varAdjFactor") contains the
variance adjustment factors. For further details on these two slots, see estimateVarianceFunctions
and varAdjFactors.

Examples

See the vignette

counts Accessor for the ’counts’ slot of a CountDataSet object.

Description

The counts slot holds the count data as a matrix of non-negative integer count values, one row for
each observational unit (gene or the like), and one column for each sample.

Usage

counts(cds)

4 estimateSizeFactorsForMatrix

Arguments

cds a CountDataSet object

Author(s)

Simon Anders, sanders@fs.tum.de

Examples

cds <- makeExampleCountDataSet()
head(counts(cds))

estimateSizeFactorsForMatrix
Low-level function to estimate size factors with robust regression.

Description

Given a matrix or data frame of count data, this function estimates the size factors as follows: Each
column is divided by the geometric means of the rows. The median of these ratios (skipping the
genes with a geometric mean of zero) is used as the size factor for this column.

Typically, you will not call this function directly, but use estimateSizeFactors.

Usage

estimateSizeFactorsForMatrix(counts)

Arguments

counts a matrix or data frame of counts, i.e., non-negative integer values

Value

a vector with the estimates size factors, one element per column

Author(s)

Simon Anders, sanders@fs.tum.de

See Also

estimateSizeFactors

Examples

cds <- makeExampleCountDataSet()
estimateSizeFactorsForMatrix(counts(cds))

estimateSizeFactors 5

estimateSizeFactors
Estimate the size factors for a CountDataSet

Description

Estimate the size factors for a CountDataSet

Usage

estimateSizeFactors(cds)

Arguments

cds a CountDataSet

Details

You need to call this function right after newCountDataSet unless you have manually specified
size factors.

Typically, the function is called with the idiom

cds <- estimateSizeFactors(cds)

This estimates the size factors and stores the information in the object.

Internally, the function calls estimateSizeFactorsForMatrix. See there for more details
on the calculation.

Value

The CountDataSet passed as parameters, with the size factors filled in.

Author(s)

Simon Anders, sanders@fs.tum.de

See Also

estimateSizeFactorsForMatrix

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors(cds)
sizeFactors(cds)

6 estimateVarianceFunctionForMatrix

estimateVarianceFunctionForMatrix
Lower-level functions to estimate a raw variance function.

Description

Usually, you should call estimateVarianceFunctions for a CountDataSet instead of calling
this function directly. However, if you do not have your data in the form of a CountDataSet object,
you may want to call this function directly.

Usage

estimateVarianceFunctionForMatrix(counts, sizeFactors,
locfit_extra_args = list(), lp_extra_args = list())

estimatePooledVarianceFunctionForMatrix(counts, sizeFactors,
conditions, locfit_extra_args = list(), lp_extra_args = list())

Arguments

counts a matrix of data frame of count data. All the columns of this matrix will be
considered as replicates of the same condition.

sizeFactors the size factors of the columns, as estimated e.g. with estimateSizeFactorsForMatrix

conditions estimateVarianceFunctionForMatrix assumes that all the columns
of ’counts’ are replicates. If you wish to perform a pooled variance estimation
("pooled" in the sense as, e.g., the variance estimation is done in Student’s t
test), use estimatePooledVarianceFunctionForMatrix and pass it
a factor ’conditions’ indicating which samples are replicates.

locfit_extra_args, lp_extra_args
Options to be passed to the locfit and to the lp function of the locfit package.
Use this to adjust the local fitting. For example, you may pass a value for nn
different from the default (0.7) if the fit seems too smooth or too rough by setting
lp_extra_agrs=list(nn=0.9) or you can set locfit_extra_args=list(maxk=200)
if you get the error that locfit ran out of nodes. See the documentation of the
locfit package for details. Usually, you will not need to adjuste the fitting pa-
rameters, as the defaults seem to work quite fine.

Value

a raw variance function. This is a function that, given a base mean (i.e., the mean of counts divided
by size factors), returns a raw variance estimate (which needs to be multiplied with the square of
a size factor to get the biological variance on the count scale; to get the full variance, add the shot
noise as well). For compatibility with rawVarFunc, the function comes with an attribute, named
varAdjFactor, which is always 1.

Author(s)

Simon Anders, sanders@fs.tum.de

estimateVarianceFunctions 7

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors(cds)
vf <- estimateVarianceFunctionForMatrix(counts(cds), sizeFactors(cds))
vf(head(counts(cds)[,1] / sizeFactors(cds)[1]))
attr(vf, "varAdjFactor")

estimateVarianceFunctions
Estimate the variance functions for a CountDataSet.

Description

This function calls, for each condition that has replicates, the lower-level function estimateVarianceFunctionForMatrix
to estimate the raw variance function for this condition.

Usage

estimateVarianceFunctions(cds, method = c("normal", "blind", "pooled"),
pool = NULL, locfit_extra_args = list(), lp_extra_args = list(),
modelFrame = NULL)

Arguments

cds a CountDataSet with size factors

method There are three ways how the variance functions can be estimated:

• normalFor each condition with replicates, estimate a variance function by
considering the data from samples for this condition. Then, construct a
variance function ’_max’ that takes the maximum over all other variance
functions and assign this one to all samples of unreplicated conditions.

• blindIgnore the sample labels and pretend that all samples are replicates of
a single condition. This allows to get a variance estimate even if one does
not have any biological replicates. However, this can leed to drastic loss of
power; see the vignette for details. The single estimated variance condition
is the called "_blind" and assigned to all samples.

• pooledUse the samples from all conditions with replicates to estimate a
single pooled variance function, to be called "_pool" and assign it to all
samples.

pool This argument is deprecated; do not use it. It is (for now) retained for compati-
bility with code written for DESeq versions 1.1.6 or eralier. Setting ’pool=FALSE’
is the same as ’method="normal"’ and setting ’pool=TRUE’ is the same as
’method="blind"’ (not ’method="pool"). Note that the deprecation also resolved
the issue that calling the ’blind’ estimation a ’pooled’ was incorrect use of ter-
minology.

locfit_extra_args, lp_extra_args
Options to be passed to the locfit and to the lp function of the locfit package.
Use this to adjust the local fitting. For example, you may pass a value for nn
different from the default (0.7) if the fit seems too smooth or too rough by setting
lp_extra_agrs=list(nn=0.9) or you can set locfit_extra_args=list(maxk=200)

8 estimateVarianceFunctions

if you get the error that locfit ran out of nodes. See the documentation of the
locfit package for details. Usually, you will not need to adjuste the fitting pa-
rameters, as the defaults seem to work quite fine.

modelFrame By default, the information in conditions(cds) or pData(cds) are used to deter-
mine, which samples are replicates (see newCountDataSet). Alternatively
(and only for method "pooled"), a data frame can be passed here, and all rows
that are identical in this dat frame are considered replicated.

Details

Behaviour for pooled=FALSE: The estimated raw variance functions are placed in the environment
rawVarFuncs, which is a slot in CountDataSet, using the condition labels as names. A further
function, named "_max", is placed there as well, which always return the maximum of all the other
functions.

Then, the rawVarFuncTable (q.v.) is filled to assign to each replicated condition the raw vari-
ance function estimated for it, and to each condition without replicates, the "_max" function.

Behaviour for pooled=TRUE: A single raw variance function is estimated from all the count data,
ignoring the condition labels. It is stored in the rawVarFuncs slot under the name "_pooled". In the
rawVarFuncTable, "_pooled" is assigned to all conditions.

In either case, all the variance adjustment factors (see varAdjFactors) are set to 1.

It is advisable to always call residualsEcdfPlot afterwards to verify the fit.

Value

The CountDataSet cds, with the slots rawVarFuncs and rawVarFuncTable updated.

Author(s)

Simon Anders, sanders@fs.tum.de

See Also

scvPlot to visualize the result and varianceFitDiagnostics and residualsEcdfPlot
to check the fit.

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors(cds)
cds <- estimateVarianceFunctions(cds)
vf <- rawVarFunc(cds, "A")
vf(head(counts(cds)[,1] / sizeFactors(cds)[1]))

getBaseMeansAndVariances 9

getBaseMeansAndVariances
Perform row-wise estimates of base-level means and variances for
count data.

Description

This function is called internally by a number of other functions. You will need to call it directly
only in very special cases.

Usage

getBaseMeansAndVariances(counts, sizeFactors)

Arguments

counts a matrix of data frame of count data. All the columns of this matrix will be
considered as replicates of the same condition.

sizeFactors the size factors of the columns, as estimated e.g. with estimateSizeFactorsForMatrix

Value

A data frame with one row for each row in ’counts’ and two columns:

baseMean The base mean for each row. This is the mean of the counts after they have been
divided by the size factors

comp2 The base variance for each row. This is the variance of the counts after they have
been divided by the size factors

Author(s)

Simon Anders, sanders@fs.tum.de

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors(cds)
head(getBaseMeansAndVariances(counts(cds), sizeFactors(cds)))

getRawScvDistanceMatrix
Calculates a matrix of "distances" between samples

Description

In order to judge the similarity of samples, a distance matrix can be handy. This function calls
getRawScvForSamplePair for each pair of samples and returns the a symmetric distance
matrix.

10 getRawScvForSamplePair

Usage

getRawScvDistanceMatrix(cds)

Arguments

cds a CountDataSet with estimates size factors

Details

See getRawScvForSamplePair for details on the metric.

Value

A symmetric matrix, with one row and one column for each sample.

Author(s)

Simon Anders

See Also

getRawScvForSamplePair

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors(cds)
dm <- getRawScvDistanceMatrix(cds)
heatmap(dm, symm=TRUE)

getRawScvForSamplePair
for a pair of samples, calculate the average raw SCV between them,
as a measure of noise

Description

The average raw SCV between two samples is a good measure of the sample-to-sample variability
between two samples that does not include the shot noise, i.e., only reflects the “distance” between
the samples without being affected by sequencing depth.

Usage

getRawScvForSamplePair(cds, sample1, sample2)

Arguments

cds A CountDataSet with estimated size factors.

sample1 An index or column name identifying a sample.

sample2 Ditto.

getVarianceStabilizedData 11

Details

This function calls estimateVarianceFunctionForMatrix with the data for just the two
specified columns and so obtains a raw variance function, which is the used to calculate the raw
variance (i.e., the variance without shot noise) for each gene. This is converted by dividing by the
square of the size-factors-normalized count for the gene, to get a raw squared coefficient of variance
(raw SCV), which is finally adjusted for the bias due to the division with adjustScvForBias.
The mean of the rawSCV values for all genes is returned.

Interpretation: The square root of the mean rawSCV is a measure of the typical variation of the
concentration of a gene’s transcript between the two samples. So, if you get, say, a mean raw SCV
of 0.1 between two samples, it means that, typicaly, the concentration of a genes transcript varies
by 31 (because sqrt(.1) is .31) from one sample to the other.

Check whether the value obtained between biological replicates seems accceptable in the light of
this interpretation. For technical replicates, the raw SCV value should be very low, maybe below
0.01, and large values indicate problems with the library preparation.

Value

A single number, the mean raw SCV, as described above.

Author(s)

Simon Anders

See Also

getRawScvDistanceMatrix

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors(cds)
getRawScvForSamplePair(cds, "A1", "A2")

getVarianceStabilizedData
Perform a variance stabilising transformation (VST) on the count data

Description

This function calculates a variance stabilising transformations (VST) from the raw variance func-
tions and then transforms the count data (after normalization by division by the size factor), yielding
a matrix of values which are now approximately homoskedastic. This is useful as input to statistical
analyses requiring homoskedasticity.

Usage

getVarianceStabilizedData(cds)

Arguments

cds a CountDataSet with estimated variance functions

12 makeExampleCountDataSet

Details

For each sample (i.e., column of counts(cds)), the full variance function is calculated from
the raw variance (by scaling according to the size factor and adding the shot noise). The function
always uses a pooled estimate of the variance function, i.e., one ignoring conditions. The reciprocal
of the square root of the base variance (i.e., the full variance divided by the size factor) is then
numerically integrated up, and the integral (approximated by a spline function) evaluated for each
count value in the column, yielding a transformed value.

Note: This function calls internally estimateVarianceFunctionswith pooled=TRUE and
bases its calculations on the result. Any condition labels or variance adjustment factors are hence
ignored.

Limitations: In order to preserve normalization, the same transformation has to be used for all
samples. This results in the variance stabilizition to be only approximate. The more the siza factors
differ, the more residual dependence of the variance on the mean you will find in the transformed
data. (Compare the variance of the upper half of your transformed data with the lower half to see
whether this is a problem in your case.)

Value

A matrix of the same dimension as the count data, containing the transformed data.

Author(s)

Simon Anders, sanders@fs.tum.de

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors(cds)
cds <- estimateVarianceFunctions(cds)
vsd <- getVarianceStabilizedData(cds)
colsA <- conditions(cds) == "A"
plot(rank(rowMeans(vsd[,colsA])), genefilter::rowVars(vsd[,colsA]))

makeExampleCountDataSet
make a simple example CountDataSet with random data

Description

This function returns an example CountDataSet. It is used for the examples in the package help
pages.

Usage

makeExampleCountDataSet()

nbinomFitGLM 13

Value

a CountDataSet that has been constructed as follows: First, true base mean values for 10,000 genes
are drawn from an exponential distribution with rate 1/250. Then, certain genes are declared (with
probability 0.3 per gene) as truly differentially expressed (tDE). For these genes, the true base mean
is split into two values, one for condition "A" and one for condition "B", such that the log2 fold
change from "A" to "B" follows a zero-centred normal distribution with standard deviation 2. Then,
counts are drawn for each gene for 5 samples, the first three corresponding to condition "A" and the
remaining two for condition "B". The counts are drawn from a negative binomial with the specified
mean, multiplied by the size factor for the sample, with a constant raw SCV of 0.2 (i.e., a ’size’
parameter of 1/0.2). The true size factors are fixed to c(1., 1.3, .7, .9, 1.6).

All these values were chosen to give data that at least somewhat resembles what one might encounter
in an actual experiment. Note that this function is not meant to verify the package by simulation.
For this purpose the parameters and distribution choices should be more varied.

Author(s)

Simon Anders, anders@embl.de

Examples

cds <- makeExampleCountDataSet()

nbinomFitGLM Fit a generalized linear model (GLM) for each gene.

Description

Use this function to estimate coefficients and calculate deviance from a GLM for each gene. The
GLM uses the nbkd.sf family, with the dispersion estimate according to getVarianceFunction(cds).
Note that this requires that the variance functions were estimated with method "pooled" or "blind".

Usage

nbinomFitGLM(cds, modelFormula)

Arguments

cds a CountDataSet

modelFormula a formula. The left hand side must be ’count’, the right hand side can in-
volve any column of pData(cds), i.e., pData(cds) is used as the model
frame. If you have passed just a single factor to the ’conditions’ argument of
newCountDataSet, it can be referred to as ’condition’ in the formula. If you
have passed a data frame to ’conditions’, all columns of this data frame will be
available.

14 nbinomGLMsForMatrix

Value

A data frame with one row for each gene and columns as follows:

• one column for each estimated coefficient, on a log2 scale (i.e., the natural log reported by
glm is rescaled to base 2)

• a column ’deviance’, with the deviance of the fit

• a boolean column ’converged’, indicating whether the fit converged

Furthermore, the data frame has a scalar attribute ’df.residual’ that contains the number of residual
degrees of freedom.

Author(s)

Simon Anders (sanders@fs.tum.de)

See Also

newCountDataSet,nbinomGLMTest, nbkd.sf

Examples

see nbinomGLMTest for an example

nbinomGLMsForMatrix
Fit negative binomial GLMs to a count matrix.

Description

This is a low-level function that is wrapped by nbinomGLMTest.

Usage

nbinomGLMsForMatrix(counts, sizeFactors, rawScv, modelFormula, modelFrame, quiet = FALSE, reportLog2 = TRUE)

Arguments

counts a matrix of integer counts. Rows for genes, Columns for samples.

sizeFactors a vector with a size factor for each column in ’counts’.

rawScv a vector with a raw SCV (i.e., a dispersion) for each row in ’counts’.

modelFormula a model formula. The left hand side should read ’count ~’.

modelFrame a model frame (with one row for each column in ’counts’)

quiet whether to not print dots

reportLog2 whether to convert reported coefficients from natural log to log2 scale

nbinomGLMTest 15

Value

A data frame with one row for each gene and columns as follows:

• one column for each estimated coefficient, on a log2 scale (i.e., the natural log reported by
glm is rescaled to base 2)

• a column ’deviance’, with the deviance of the fit

• a boolean column ’converged’, indicating whether the fit converged

Furthermore, the data frame has a scalar attribute ’df.residual’ that contains the number of residual
degrees of freedom.

Author(s)

Simon Anders, sanders@fs.tum.de

Examples

See the code of nbinomFitGLM for an example.

nbinomGLMTest Perform chi-squared tests comparing two sets of GLM fits

Description

For each gene, the function calculates a chi-square p value by simply calculating: 1 - pchisq(resReduced$deviance
- resFull$deviance, attr(resReduced, "df.residual") - attr(resFull,
"df.residual"))

Usage

nbinomGLMTest(resFull, resReduced)

Arguments

resFull, resReduced
GLM fit data frames, as returned by nbinomFitGLM, first the full, then the
reduced model.

Value

a vector of p values

Author(s)

Simon Anders, anders@embl.de

See Also

nbinomFitGLM

16 nbinomTestForMatrices

Examples

cds <- makeExampleCountDataSet()[1:100,]
cds <- estimateSizeFactors(cds)
cds <- estimateVarianceFunctions(cds, "pooled")
fit1 <- nbinomFitGLM(cds, count ~ condition)
fit0 <- nbinomFitGLM(cds, count ~ 1)
nbinomGLMTest(fit1, fit0)

nbinomTestForMatrices
Perform row-wise tests for differences between the base means of two
count matrices.

Description

This function is called by nbinomTest. Call it directly only if the S4 interface is unsuitable for
your task.

Usage

nbinomTestForMatrices(countsA, countsB, sizeFactorsA, sizeFactorsB, rawScvA, rawScvB, eps = 0.0001)

Arguments

countsA A matrix of counts, where each column is a replicate

countsB Another matrix of counts, where each column is a replicate

sizeFactorsA Size factors for the columns of the matrix ’countsA’

sizeFactorsB Size factors for the columns of the matrix ’countsB’

rawScvA Raw squared coefficient of variantion (SCV) for ’countsA’, a vector with one
value per gene

rawScvB The same for ’countsB’

eps Precision goal for the p value. This is only a rough guidance with no guarantee
of adherence.

Details

See the paper for an exact description of the null hypothesis tested.

Value

A vector of unadjusted p values, one for each row in the counts matrices.

Author(s)

Simon Anders, sanders@fs.tum.de

nbinomTest 17

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors(cds)
cds <- estimateVarianceFunctions(cds)
colsA <- conditions(cds) == "A"
colsB <- conditions(cds) == "B"
bmvA <- getBaseMeansAndVariances(counts(cds)[,colsA], sizeFactors(cds)[colsA])
bmvB <- getBaseMeansAndVariances(counts(cds)[,colsB], sizeFactors(cds)[colsB])
pvals <- nbinomTestForMatrices(

counts(cds)[,colsA],
counts(cds)[,colsB],
sizeFactors(cds)[colsA],
sizeFactors(cds)[colsB],
adjustScvForBias(

rawVarFunc(cds, "A")(bmvA$baseMean) / bmvA$baseMean^2,
length(colsA)),

adjustScvForBias(
rawVarFunc(cds, "B")(bmvB$baseMean) / bmvB$baseMean^2,
length(colsB)))

names(pvals) <- row.names(counts(cds))
head(pvals)

nbinomTest Test for differences between the base means for two conditions

Description

This function tests for differences between the base means of two conditions (i.e., for differential
expression in the case of RNA-Seq).

Usage

nbinomTest(cds, condA, condB, pvals_only = FALSE, eps=1e-4)

Arguments

cds a CountDataSet with size factors and raw variance functions

condA one of the conditions in ’cds’

condB another one of the conditions in ’cds’

pvals_only return only a vector of (unadjusted) p values instead of the data frame described
below.

eps Precision goal for the p value. This is only a rough guidance with no guarantee
of adherence.

Details

See nbinomTestForMatrices for more technical informations

18 nbkd.sf

Value

A data frame with the following columns:

id The ID of the observable, taken from the row names of the counts slots.

baseMean The base mean (i.e., mean of the counts divided by the size factors) for the
counts for both conditions

baseMeanA The base mean (i.e., mean of the counts divided by the size factors) for the
counts for condition A

baseMeanB The base mean for condition B

foldChange The ratio meanB/meanA
log2FoldChange

The log2 of the fold change

pval The p value for rejecting the null hypothesis ’meanA==meanB’

padj The adjusted p values (adjusted with ’p.adjust(pval, method="BH")’)

resVarA The ratio of the row-wise estimate of the base variance of the counts for condi-
tion A, divided by the value predicted with the base variance function from the
base mean. If this number is very high, the hit seems to be a variance outlier and
might be false.

resVarB The same for condition B.

Author(s)

Simon Anders, sanders@fs.tum.de

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors(cds)
cds <- estimateVarianceFunctions(cds)
head(nbinomTest(cds, "A", "B"))

nbkd.sf GLM family for a negative binomial with known dispersion and log
link with size factors

Description

A distribution family for use with glm. It describes a negative binomial (as negative.binomial
in the MASS package), but with a special link function, namely eta[i] = log(mu[i] / sf[i]), i.e.,
each count value is divided by its size factor before the log is taken. This is used internally by
nbinomFitGLM.

Usage

nbkd.sf(r, sf)

Arguments

r The ’size’ argument (see dnbinom), i.e., the reciprocal of the dispersion.

sf A vector of size factors.

newCountDataSet 19

Value

A GLM family object.

Author(s)

Simon Anders, anders@embl.de

newCountDataSet Create a CountDataSet object

Description

This function creates a CountDataSet object from a matrix or data frame of count data.

Usage

newCountDataSet(countData, conditions, sizeFactors = NULL, phenoData = NULL, featureData = NULL)

Arguments

countData A matrix or data frame of count data, i.e., of non-negative integer values. The
rows correspond to observations (e.g., number of reads that were assigned to a
gene), the columns correspond to samples (or experiments). Note that biolog-
ical replicates should each get their own column, while the counts of technical
replicates (i.e., several sequencing ruins/lanes from the same sample) have to be
summed up into a single column.

conditions A factor of experimental conditions (or treatments, or tissue types, or pheno-
types, or the like). The length of the factor has to be equal to the number of
columns of the countData matrix, assigning a condition to each sample. If ’con-
ditions’ is not a factor, it will be converted to one.
Alternatively, you may pass a data frame, that will be placed in pData(cds) as is
and can then be used with the modes "pooled" and "blind" in estimateVarianceFunctions
and its columns can be refered top in a model formula provided to nbinomFitGLM.

sizeFactors The size factors (see sizeFactors). If you have estimated the size factors
beforehand, you can pass your estimate here as a numerical vector with as many
elements as there are columns in the count data. Usually, however, this field
is left blank. Then, you must call function estimateSizeFactors after-
wards, which will estimate the size factors and fill in the information.

phenoData You may pass an AnnotatedDataFrame here to describe the columns of the count
matrix. Note that the package always adds two rows (or creates a new Anno-
tatedDataFrame with only these two rows in case you do not supply one) with
names "condition" and "sizeFactor" to store this information.

featureData You may pass an AnnotatedDataFrame here to describe the rows of the count
matrix. The package will just pass through this information without using it.

Details

See also the documentation of eSet (package Biobase) for the meaning of the other slots, which
CountDataSet inherits from eSet (but which the present package does not use).

20 rawVarFunc

Value

an object of class CountDataSet

Author(s)

Simon Anders, sanders@fs.tum.de

Examples

countsTable <- counts(makeExampleCountDataSet())
cds <- newCountDataSet(countsTable, c("A", "A", "A", "B", "B"))

rawVarFunc Accessor for raw variance functions

Description

Given the name of a raw variance function or the name of a condition, get the function from the
environment rawVarFuncs (which is a slot of CountDataSet).

Usage

rawVarFunc(cds, condOrName=NULL, byName=FALSE)

Arguments

cds a CountDataSet with variance fucntions (i.e., estimateVarianceFunctions
has already been called)

condOrName For byName==FALSE, this argument is taken to be the name of a condition.
rawVarFunc then looks up in rawVarFuncTable(cds) which raw vari-
ance function should be used for the given condition and returns this function.
For byName==TRUE, the look-up is skipped, i.e., the argument is taken di-
rectly as the name under which the raw variance function is stored in the cds’s
rawVarFuncs environment.
If only one variance function exists (e.g., because estimateVarianceFunctions
has been caled with method="pooled" or method="blind"), the argu-
ment may be left at its default NULL, and the only variance function is returned.

byName how to interpret the condByName argument, see above

Value

a raw variance function. This is a function that, given a base mean (i.e., the mean of counts di-
vided by size factors), returns a raw variance estimate. To get the full variance, the raw variance
needs to be scales up by multiplying it with the square of the size factor, and the shot noise has
to be added. The function comes with an attribute, named varAdjFactor, which contains (for
byName==FALSE) the variance adjustment factor (see varAdjFactors) set for this condition.
For byName==TRUE, the variance adjustment factor is always given as 1. Note that the raw vari-
ance fucntion does not multiply its result with this factor; you have to do this yourself if needed.

rawVarFuncTable 21

Author(s)

Simon Anders, sanders@fs.tum.de

See Also

estimateSizeFactors

Examples

See example for estimateVarianceFunctions

rawVarFuncTable Accessor functions for the slot rawVarFuncTable of the class Count-
DataSet

Description

Accesses the rawVarFuncTable.

Usage

rawVarFuncTable(cds)
rawVarFuncTable(cds) <- value

Arguments

cds a CountDataSet object

value The rawVarFuncTable is a named character vector with one element for each
condition, and the condition labels used as names. The value of the element is
the name, under which the raw variance function to be used for the correspond-
ing condition can be found in the environment rawVarFuncs (which is a slot of
CountDataSet).
The function estimateVarianceFunctions fills in this table. The func-
tion rawVarFunc, and through it several other functions working on Count-
DataSets, use it to look up which raw variance function to use for which condi-
tion.

Author(s)

Simon Anders, sanders@fs.tum.de

See Also

estimateSizeFactors

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors(cds)
cds <- estimateVarianceFunctions(cds)
rawVarFuncTable(cds)

22 residualsEcdfPlotFromDiagnostics

residualsEcdfPlotFromDiagnostics
Produce a diagnostic plot to check the fit of a raw variance function.

Description

This function produces the same plot as residualsEcdfPlot. While residualsEcdfPlot
takes a CountDataSet as argument and the calls varianceFitDiagnostics, the present func-
tion expects the output of a call to varianceFitDiagnostics (or varianceFitDiagnosticsForMatrix)
as input.

Usage

residualsEcdfPlotFromDiagnostics(fitdiag, ncuts = 7, plotTitle = "Residuals ECDF plot")

Arguments

fitdiag a data frame as returned by varianceFitDiagnostics or varianceFitDiagnosticsForMatrix

ncuts the number of baseMean strata

plotTitle the main title for the plot

Details

See residualsEcdfPlot.

Value

None, but a plot is produced.

See Also

residualsEcdfPlot, varianceFitDiagnostics, varianceFitDiagnosticsForMatrix

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors(cds)
cds <- estimateVarianceFunctions(cds)
vfd <- varianceFitDiagnostics(cds, "A")
residualsEcdfPlotFromDiagnostics(vfd)

residualsEcdfPlot 23

residualsEcdfPlot Produce a diagnostic plot to check the fit of a raw variance function.

Description

The residuals of the fit should follow a scaled chi-squared distribution. This function calls varianceFitDiagnostics
to get the cumulative chi-squared probabilities of the residuals and plots their ECDFs, stratified by
base means.

Usage

residualsEcdfPlot(cds, condition, ncuts = 7)

Arguments

cds a CountDataSet with raw variance functions

condition the name of a condition

ncuts the number of base mean strata (i.e, of curves)

Details

As the cumulative chi-square probabilities should be uniform, the ECDF curves should roughly
follow the main diagonal (indicated by a green line). It is acceptable if the strata for very low
counts deviate from this.

If the ECDF curves deviate too strongly from the green line, your replicates are most likly hetero-
geneous (i.e., their some are more similar than others), and the variance estimation procedure gets
mislead. If the ECDF curves are below the green line, variance is underestimated, which leads to
too low p values (and hence, too many false positives). If the ECDF curves are above the green
line, variance is overestimated, which leads to too high p values (and hence, DESeq might be more
conservative in its test when necessary). You can adjust this by setting variance adjustment factors
with varAdjFactors.

Value

None, but a plot is produced.

See Also

residualsEcdfPlotFromDiagnostics, varianceFitDiagnostics

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors(cds)
cds <- estimateVarianceFunctions(cds)
residualsEcdfPlot(cds, "A")

24 scvPlot

scvPlot Produces a diagnostic plot with the variance estimates, given as
squared coefficients of variation (SCV)

Description

The produced plot shows the estimated variance functions of the given CountDataSet, in the form of
the squared coefficient of variation (SCV), i.e., the variance divided by the squared mean. The solid
lines are the raw SCV estimates, one per condition. The dashed lines are the full variance estimates
for each sample, i.e., the vertical distance between a dashed line and its corresponding solid line (of
the same colour) is the shot noise. As the x axis is scaled as base mean (size-adjusted mean), the
amount of shot noise depends on the size factor. The solid black line is a density estimate of the
base means. Only were a sufficient density of counts is present can a good estimate be expected.

Usage

scvPlot(cds, xlim = NULL, ylim = c(0, 0.8), skipBiasCorrection = FALSE)

Arguments

cds a CountDataSet with estimated variance functions

xlim, ylim the plot limits

skipBiasCorrection
if set to true, the plotted SCVs are calculated directly from the variance fit,
skipping the call to adjustScvForBias that is done by default.

Value

None; but a plot is produced.

Author(s)

Simon Anders, sanders@fs.tum.de

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors(cds)
cds <- estimateVarianceFunctions(cds)
scvPlot(cds)

sizeFactors 25

sizeFactors Accessor functions for the sizeFactors information in a CountDataSet

Description

The sizeFactors vector assigns to each column of the count data a value, the size factor, such that
count values in the columns can be brought to a common scale by dividing by the corresponding
size factor.

Usage

sizeFactors(cds)
sizeFactors(cds) <- value

Arguments

cds a CountDataSet

value a vector of number, one size factor for each column in the count data

Author(s)

Simon Anders, sanders@fs.tum.de

See Also

estimateSizeFactors

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors(cds)
sizeFactors(cds)

varAdjFactors Defunct function. Do not use.

Description

For a few version (which were only available in the deval branch), the possibility was given to scale
the variance estimates if desired. As this turned out to cause more design issues than it solved, the
fucntionality was removed again.

Author(s)

Simon Anders, sanders@fs.tum.de

26 varianceFitDiagnosticsForMatrix

varianceFitDiagnosticsForMatrix
A lower-level function to get fit diagnostics

Description

Usually, you call varianceFitDiagnostics, which in turn counts varianceFitDiagnosticsForMatrix.
If you do not have your data in a CountDataSet object, you may want to call this function directly.

Usage

varianceFitDiagnosticsForMatrix(counts, sizeFactors, rawVarFunc, poolingConditions = NULL)

Arguments

counts a matrix of counts, with columns corresponding to replicates

sizeFactors the size factors for the columns of the counts matrix

rawVarFunc the raw variance function estimated from the counts data
poolingConditions

by default, all columns in ’counts’ are considered as replicates. For a pooled
variance estimate (in the sense of e.g. the way variance is estimated in Student’s
t test), pass a factor as ’poolingConditions’ that indicates which samples are
replicates of each other.

Details

See varianceFitDiagnostics for more explanation

Value

The same return value as described for varianceFitDiagnostics.

Author(s)

Simon Anders, sanders@fs.tum.de

See Also

varianceFitDiagnostics,residualsEcdfPlotFromDiagnostics

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors(cds)
cds <- estimateVarianceFunctions(cds)
colsA <- conditions(cds) == "A"
vfd <- varianceFitDiagnosticsForMatrix(

counts(cds)[,colsA],
sizeFactors(cds)[colsA],
rawVarFunc(cds, "A"))

head(vfd)

varianceFitDiagnostics 27

varianceFitDiagnostics
Generate a data frame with diagnostic information on the fit of a base
variance function.

Description

After fitting base variance function with estimateVarianceFunctions, it is prudent to check
the quality of the fit for all or at least a few conditions. This function produces a data frame with
useful data for this purpose.

Usage

varianceFitDiagnostics(cds, cond = NULL, modelFrame = NULL)

Arguments

cds a CountDataSet with base variance functions

cond the name of a condition. If only one variance function was estimated for ’cds’
(e.g., if the modes "pooled" or "blind" were used in estimateVarianceFunctions),
leave this parameter as NULL.

modelFrame If a model frame was specified in estimateVarianceFunctions, it should
be passed here again.

Value

A data frame with these columns:

baseMean The base mean for the condition (see getBaseMeansAndVariances for
details).

baseVar The base variance for the condition as estimated from the counts of the respecive
row only (see getBaseMeansAndVariances for details).

fittedRawVar The raw variance as predicted by the raw variance function when given the base-
Mean.

fittedBaseVar
The base variance, found by adding the effective base-level shot noise to the raw
variance.

pchisq The cumulative chi-square probability of the residual.

Note

To check the fit, you might want to do one of the following:

Make a doubly-logarithmic scatter plot of baseVar against the baseMean and then add a line
with the fittedBaseVar values. The line should follow the points.

•• Calculate the squared coefficient of variance (SCV), i.e., baseVar/baseMean^2. Make a scatter
plot of the SCV against the (log of the) baseMean and then add a line of the fitted SCV. The
line should follow the points. You can also plot 1/baseMean against baseMean as another line
to see the shot noise.

28 varianceFitDiagnostics

• The residuals, i.e., baseVar/fittedBaseVar, should follow a chi-square distribution with k de-
grees of freedom, after scaling by k (where k is the number of replicates minus 1). (See
paper for details). The ’pchisq’ column contains the cumulative probabilities (i.e., the re-
sult of ’pchisq’) of the residuals, and these values should be uniformly distributed. You can
check this with a histogram, or more conveniently, with ECDF plot generated by the function
residualsEcdfPlot.

Author(s)

Simon Anders, sanders@fs.tum.de

See Also

residualsEcdfPlot

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors(cds)
cds <- estimateVarianceFunctions(cds)
vfd <- varianceFitDiagnostics(cds, "A")
head(vfd)

Index

adjustScvForBias, 1, 11, 24

conditions, 2, 3
CountDataSet-class, 2
counts, 3, 3

dnbinom, 18

estimatePooledVarianceFunctionForMatrix
(estimateVarianceFunctionForMatrix),
6

estimateSizeFactors, 3, 4, 5, 19, 21, 25
estimateSizeFactorsForMatrix, 4,

5, 6, 9
estimateVarianceFunctionForMatrix,

6, 7, 11
estimateVarianceFunctions, 3, 6, 7,

12, 19–21, 27

getBaseMeansAndVariances, 9, 27
getRawScvDistanceMatrix, 9, 11
getRawScvForSamplePair, 9, 10, 10
getVarianceStabilizedData, 11
glm, 14, 15, 18

makeExampleCountDataSet, 12

nbinomFitGLM, 13, 15, 18, 19
nbinomGLMsForMatrix, 14
nbinomGLMTest, 14, 15
nbinomTest, 1, 16, 17
nbinomTestForMatrices, 16, 17
nbkd.sf, 13, 14, 18
newCountDataSet, 2, 3, 5, 8, 13, 14, 19

rawVarFunc, 3, 6, 20, 21
rawVarFuncTable, 8, 21
rawVarFuncTable<-

(rawVarFuncTable), 21
residualsEcdfPlot, 8, 22, 23, 28
residualsEcdfPlotFromDiagnostics,

22, 23, 26

scvPlot, 8, 24
sizeFactors, 3, 19, 25

sizeFactors<- (sizeFactors), 25

varAdjFactors, 3, 8, 20, 23, 25
varAdjFactors<- (varAdjFactors),

25
varianceFitDiagnostics, 8, 22, 23,

26, 27
varianceFitDiagnosticsForMatrix,

22, 26, 26

29

	adjustScvForBias
	conditions
	CountDataSet-class
	counts
	estimateSizeFactorsForMatrix
	estimateSizeFactors
	estimateVarianceFunctionForMatrix
	estimateVarianceFunctions
	getBaseMeansAndVariances
	getRawScvDistanceMatrix
	getRawScvForSamplePair
	getVarianceStabilizedData
	makeExampleCountDataSet
	nbinomFitGLM
	nbinomGLMsForMatrix
	nbinomGLMTest
	nbinomTestForMatrices
	nbinomTest
	nbkd.sf
	newCountDataSet
	rawVarFunc
	rawVarFuncTable
	residualsEcdfPlotFromDiagnostics
	residualsEcdfPlot
	scvPlot
	sizeFactors
	varAdjFactors
	varianceFitDiagnosticsForMatrix
	varianceFitDiagnostics
	Index

