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best Show best hyperparameter settings

Description

In this package hyperparameter tuning is performed by an inner cross-validation step for each
learningset. A grid of values is tried and evaluated in terms of the misclassification rate, the
results are saved in an object of class tuningresult. This method displays (separately for each
learningset) the hyperparameter/ hyperparameter combination that showed the best results.
Note that this must not be unique; in this case, only one combination is displayed.

Usage

best(object, ...)

Arguments

object An object of class tuningresult.

... Currently unused argument.

Value

A list with elements equal to the number of different learningsets. Each element contains the best
hyperparameter combination and the corresponding misclassification rate.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

See Also

tune
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boxplot Make a boxplot of the classifier evaluation

Description

This method displays the slot scores of performance scores of an object of class evaloutput.

Arguments

x An object of class evaloutput.

... Further graphical parameters passed to the classical boxplot function.

Value

The only return is a boxplot.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

References

Slawski, M. Daumer, M. Boulesteix, A.-L. (2008) CMA - A comprehensive Bioconductor package
for supervised classification with high dimensional data. BMC Bioinformatics 9: 439

See Also

evaluation

classification-methods
General method for classification with various methods

Description

Perform classification for the following signatures:

Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For further argument and output information, consult classification.
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classification General method for classification with various methods

Description

Most general function in the package, providing an interface to perform variable selection, hyper-
parameter tuning and classification in one step. Alternatively, the first two steps can be performed
separately and can then be plugged into this function.
For S4 method information, s. classification-methods.

Usage

classification(X, y, f, learningsets, genesel, genesellist = list(), nbgene, classifier, tuneres, tuninglist = list(), trace = TRUE, models=FALSE,...)

Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

WARNING: The class labels will be re-coded to range from 0 to K-1, where K
is the total number of different classes in the learning set.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.

learningsets An object of class learningsets. May be missing, then the complete datasets
is used as learning set.

genesel Optional (but usually recommended) object of class genesel containing vari-
able importance information for the argument learningsets

genesellist In the case that the argument genesel is missing, this is an argument list
passed to GeneSelection. If both genesel and genesellist are miss-
ing, no variable selection is performed.

nbgene Number of best genes to be kept for classification, based on either genesel or
the call to GeneSelection using genesellist. In the case that both are
missing, this argument is not necessary. note:

• If the gene selection method has been one of "lasso", "elasticnet",
"boosting", nbgene will be reset to min(s, nbgene) where s is
the number of nonzero coefficients.

• if the gene selection scheme has been "one-vs-all", "pairwise"
for the multiclass case, there exist several rankings. The top nbgene will
be kept of each of them, so the number of effective used genes will some-
times be much larger.
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classifier Name of function ending with CMA indicating the classifier to be used.

tuneres Analogous to the argument genesel - object of class tuningresult con-
taining information about the best hyperparameter choice for the argument learningsets.

tuninglist Analogous to the argument genesellist. In the case that the argument
tuneres is missing, this in argument list passed to tune. If both tuneres
and tuninglist are missing, no variable selection is performed. warning:
Note that if a user-defined hyperparameter grid is passed, this will result in a list
within a list: tuninglist = list(grids=list(argname = c()),
s. example. warning: Contrary to tune, if tuninglist is an empty list (de-
fault), no hyperparameter tuning will be performed at all. To use pre-defined hy-
perparameter grids, the argument is tuninglist = list(grids = list()).

trace Should progress be traced ? Default is TRUE.

models a logical value indicating whether the model object shall be returned

... Further arguments passed to the function classifier.

Details

For details about hyperparameter tuning, consult tune.

Value

A list of objects of class cloutput and clvarseloutput, respectively; its length equals the
number of different learningsets. The single elements of the list can convenienly be combined
using the join function. The results can be analyzed and evaluated by various measures using the
method evaluation.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

Christoph Bernau <bernau@ibe.med.uni-muenchen.de>

References

Slawski, M. Daumer, M. Boulesteix, A.-L. (2008) CMA - A comprehensive Bioconductor package
for supervised classification with high dimensional data. BMC Bioinformatics 9: 439

See Also

GeneSelection, tune, evaluation, compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA,
flexdaCMA, gbmCMA, knnCMA, ldaCMA, LassoCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA,
pls_lrCMA, pls_rfCMA, pnnCMA, qdaCMA, rfCMA, scdaCMA, shrinkldaCMA, svmCMA

Examples

### a simple k-nearest neighbour example
### datasets
## Not run: plot(x)
data(golub)
golubY <- golub[,1]
golubX <- as.matrix(golub[,-1])
### learningsets
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set.seed(111)
lset <- GenerateLearningsets(y=golubY, method = "CV", fold=5, strat =TRUE)
### 1. GeneSelection
selttest <- GeneSelection(golubX, golubY, learningsets = lset, method = "t.test")
### 2. tuning
tunek <- tune(golubX, golubY, learningsets = lset, genesel = selttest, nbgene = 20, classifier = knnCMA)
### 3. classification
knn1 <- classification(golubX, golubY, learningsets = lset, genesel = selttest,

tuneres = tunek, nbgene = 20, classifier = knnCMA)
### steps 1.-3. combined into one step:
knn2 <- classification(golubX, golubY, learningsets = lset,

genesellist = list(method = "t.test"), classifier = knnCMA,
tuninglist = list(grids = list(k = c(1:8))), nbgene = 20)

### show and analyze results:
knnjoin <- join(knn2)
show(knn2)
eval <- evaluation(knn2, measure = "misclassification")
show(eval)
summary(eval)
boxplot(eval)

## End(Not run)

cloutput-class "cloutput"

Description

Object returned by one of the classifiers (functions ending with CMA)

Slots

learnind: Vector of indices that indicates which observations where used in the learning set.

y: Actual (true) class labels of predicted observations.

yhat: Predicted class labels by the classifier.

prob: A numeric matrix whose rows equals the number of predicted observations (length
of y/yhat) and whose columns equal the number of different classes in the learning set.
Rows add up to one. Entry j,k of this matrix contains the probability for the j-th predicted
observation to belong to class k. Can be a matrix of NAs, if the classifier used does not provide
any probabilities

method: Name of the classifer used.

mode: character, one of "binary" (if the number of classes in the learning set is two) or
multiclass (if it is more than two).

model: List containing the constructed classifiers.

Methods

show Use show(cloutput-object) for brief information

ftable Use ftable(cloutput-object) to obtain a confusion matrix/cross-tabulation of y
vs. yhat, s. ftable,cloutput-method.
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plot Use plot(cloutput-object) to generate a probability plot of the matrix prob de-
scribed above, s. plot,cloutput-method

roc Use roc(cloutput-object) to compute the empirical ROC curve and the Area Under
the Curve (AUC) based on the predicted probabilities, s.roc,cloutput-method

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

See Also

clvarseloutput compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA,
gbmCMA, knnCMA, ldaCMA, LassoCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA,
pls_rfCMA, pnnCMA, qdaCMA, rfCMA, scdaCMA, shrinkldaCMA, svmCMA

clvarseloutput-class
"clvarseloutput"

Description

Object returned by all classifiers that can peform variable selection or compute variable importance.
These are:

• Random Forest, s. rfCMA,

• Componentwise Boosting, s. compBoostCMA,

• LASSO-logistic regression, s. LassoCMA,

• ElasticNet-logistic regression, s. ElasticNetCMA

. Objects of class clvarseloutput extend both the class cloutuput and varsel, s. below.

Slots

learnind: Vector of indices that indicates which observations where used in the learning set.

y: Actual (true) class labels of predicted observations.

yhat: Predicted class labels by the classifier.

prob: A numeric matrix whose rows equals the number of predicted observations (length
of y/yhat) and whose columns equal the number of different classes in the learning set.
Rows add up to one. Entry j,k of this matrix contains the probability for the j-th predicted
observation to belong to class k. Can be a matrix of NAs, if the classifier used does not provide
any probabilities

method: Name of the classifer used.

mode: character, one of "binary" (if the number of classes in the learning set is two) or
multiclass (if it is more than two).

varsel: numeric vector of variable importance measures (for Random Forest) or absolute val-
ues of regression coefficients (for the other three methods mentionned above) (from which the
majority will be zero).



CMA-package 7

Extends

Class "cloutput", directly. Class "varseloutput", directly.

Methods

show Use show(cloutput-object) for brief information

ftable Use ftable(cloutput-object) to obtain a confusion matrix/cross-tabulation of y
vs. yhat, s. ftable,cloutput-method.

plot Use plot(cloutput-object) to generate a probability plot of the matrix prob de-
scribed above, s. plot,cloutput-method

roc Use roc(cloutput-object) to compute the empirical ROC curve and the Area Under
the Curve (AUC) based on the predicted probabilities, s.roc,cloutput-method

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

See Also

rfCMA, compBoostCMA, LassoCMA, ElasticNetCMA

CMA-package Synthesis of microarray-based classification

Description

The aim of the package is to provide a user-friendly environment for the evaluation of classification
methods using gene expression data. A strong focus is on combined variable selection, hyperpa-
rameter tuning, evaluation, visualization and comparison of (up to now) 21 classification methods
from three main fields: Discriminant Analysis, Neural Networks and Machine Learning. Although
the package has been created with the intention to be used for Microarray data, it can as well be
used in various (p > n)-scenarios.

Details

Package: CMA
Type: Package
Version: 1.3.3
Date: 2009-9-14
License: GPL (version 2 or later)

Most Important Steps for the workflow are:

1. Generate evaluation datasets using GenerateLearningsets

2. (Optionally): Perform variable selection using GeneSelection

3. (Optionally): Peform hyperparameter tuning using tune
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4. Perform classification using 1.-3.

5. Repeat 2.-4. based on 1. for several methods: compBoostCMA, dldaCMA, ElasticNetCMA,
fdaCMA, flexdaCMA, gbmCMA, knnCMA, ldaCMA, LassoCMA, nnetCMA, pknnCMA,
plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA, pnnCMA, qdaCMA, rfCMA, scdaCMA,
shrinkldaCMA, svmCMA

6. Evaluate the results from 5. using evaluation and make a comparison by calling compare

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

Christoph Bernau <bernau@ibe.med.uni-muenchen.de>

Maintainer: Christoph Bernau <bernau@ibe.med.uni-muenchen.de>.

References

Slawski, M. Daumer, M. Boulesteix, A.-L. (2008) CMA - A comprehensive Bioconductor package
for supervised classification with high dimensional data. BMC Bioinformatics 9: 439

compare-methods Compare different classifiers

Description

Compare different classifiers for the following signatures:

Methods

clresultlist = "list" signature 1

For further argument and output information, consult compare

compare Compare different classifiers

Description

Classifiers can be evaluated separately using the method evaluation. Normally, several classi-
fiers are used for the same dataset and their performance is compared. This comparison procedure
is essentially facilitated by this method. For S4 method information, s. compare-methods

Usage

compare(clresultlist, measure = c("misclassification", "sensitivity",
"specificity", "average probability", "brier score", "auc"), aggfun =
meanrm, plot = FALSE, ...)
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Arguments

clresultlist A list of lists (!) of objects of class cloutput or clvarseloutput. Each
inner list is usually returned by classification. Additionally, the different
list elements of the outer list should have been created by different classifiers, s.
also example below.

measure A character vector containing one or more of the elements listed below. By de-
fault, all measures are computed, using evaluationwith scheme = "iterationwise".
Note that "sensitivity", "specificity", "auc" cannot be com-
puted for the multiclass case.

"misclassification" The missclassifcation rate.
"sensitivity" The sensitivity or 1-false negative rate. Can only be com-

puted for binary classifcation.
"specificity" The specificity or 1-false positive rate. Can only be com-

puted for binary classification.
"average probability" The average probability assigned to the correct

class. Requirement is that the used classifier provides probability estima-
tions. The optimum performance is 1.

"brier score" The Brier Score is generally defined as <sum over all
observation i> <sum over all classes k> (I(y_i=k)-
P(k))^2, with I() denoting the indicator function and P(k) the esti-
mated probability for class k. The optimum performance is 0.

"auc" The Area under the Curve (AUC) belonging to the empirical ROC curve
computed from the estimated probabilities and the true class labels. Can
only be computed for binary classification and if "scheme = iterationwise",
s. below. S. also roc,cloutput-method.

aggfun Function that determines how performance among different iterations are aggre-
gared. Default is meanrm, which computes the mean using na.rm=T. Other
possible choices are quantiles.

plot Should the performance of different classifiers be visualized by a joint boxplot
? Default is FALSE.

... Further arguments passed to boxplot in the case that plot = TRUE.

Value

A data.frame with rows corresponding to the compared classifiers and columns to the perfor-
mance measures, aggregated by aggfun, s. above.

Note

If more than one measure is computed and plot = TRUE, one separate plot is created for each of
them.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

Christoph Bernau <bernau@ibe.med.uni-muenchen.de>
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References

Dudoit, S., Fridlyand, J., Speed, T. P. (2002)
Comparison of discrimination methods for the classification of tumors using gene expression data.
Journal of the American Statistical Association 97, 77-87

Slawski, M. Daumer, M. Boulesteix, A.-L. (2008) CMA - A comprehensive Bioconductor package
for supervised classification with high dimensional data. BMC Bioinformatics 9: 439

See Also

classification, evaluation

Examples

## Not run:
### compare the performance of several discriminant analysis methods
### for the Khan dataset:
data(khan)
khanX <- as.matrix(khan[,-1])
khanY <- khan[,1]
set.seed(27611)
fiveCV10iter <- GenerateLearningsets(y=khanY, method = "CV", fold = 5, niter = 2, strat = TRUE)
### candidate methods: DLDA, LDA, QDA, pls_LDA, sclda
class_dlda <- classification(X = khanX, y=khanY, learningsets = fiveCV10iter, classifier = dldaCMA)
### peform GeneSlection for LDA, FDA, QDA (using F-Tests):
genesel_da <- GeneSelection(X=khanX, y=khanY, learningsets = fiveCV10iter, method = "f.test")
###
class_lda <- classification(X = khanX, y=khanY, learningsets = fiveCV10iter, classifier = ldaCMA, genesel= genesel_da, nbgene = 10)

class_qda <- classification(X = khanX, y=khanY, learningsets = fiveCV10iter, classifier = qdaCMA, genesel = genesel_da, nbgene = 2)

### We now make a comparison concerning the performance (sev. measures):
### first, collect in a list:
dalike <- list(class_dlda, class_lda, class_qda)
### use pre-defined compare function:
comparison <- compare(dalike, plot = TRUE, measure = c("misclassification", "brier score", "average probability"))
print(comparison)

## End(Not run)

compBoostCMA-methods
Componentwise Boosting

Description

Roughly speaking, Boosting combines ’weak learners’ in a weighted manner in a stronger ensem-
ble.

’Weak learners’ here consist of linear functions in one component (variable), as proposed by Buehlmann
and Yu (2003).

It also generates sparsity and can as well be as used for variable selection alone. (s. GeneSelection.)



compBoostCMA 11

Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For further argument and output information, consult compBoostCMA.

compBoostCMA Componentwise Boosting

Description

Roughly speaking, Boosting combines ’weak learners’ in a weighted manner in a stronger ensem-
ble.

’Weak learners’ here consist of linear functions in one component (variable), as proposed by Buehlmann
and Yu (2003).

It also generates sparsity and can as well be as used for variable selection alone. (s. GeneSelection).

For S4 method information, see compBoostCMA-methods.

Usage

compBoostCMA(X, y, f, learnind, loss = c("binomial", "exp", "quadratic"), mstop = 100, nu = 0.1, models=FALSE, ...)

Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

WARNING: The class labels will be re-coded to range from 0 to K-1, where K
is the total number of different classes in the learning set.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.

learnind An index vector specifying the observations that belong to the learning set. May
be missing; in that case, the learning set consists of all observations and pre-
dictions are made on the learning set.

loss Character specifying the loss function - one of "binomial" (LogitBoost),
"exp" (AdaBoost), "quadratic"(L2Boost).
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mstop Number of boosting iterations, i.e. number of updates to perform. The default
(100) does not necessarily produce good results, therefore usage of tune for
this argument is highly recommended.

nu Shrinkage factor applied to the update steps, defaults to 0.1. In most cases, it
suffices to set nu to a very low value and to concentrate on the optimization of
mstop.

models a logical value indicating whether the model object shall be returned

... Currently unused arguments.

Details

The method is partly based on code from the package mboost from T. Hothorn and P. Buehlmann.

The algorithm for the multiclass case is described in Lutz and Buehlmann (2006) as ’rowwise
updating’.

Value

An object of class clvarseloutput.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

References

Buelmann, P., Yu, B. (2003).

Boosting with the L2 loss: Regression and Classification.

Journal of the American Statistical Association, 98, 324-339

Buehlmann, P., Hothorn, T.

Boosting: A statistical perspective.

Statistical Science (to appear)

Lutz, R., Buehlmann, P. (2006).

Boosting for high-multivariate responses in high-dimensional linear regression.

Statistica Sinica 16, 471-494.

See Also

dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA, gbmCMA, knnCMA, ldaCMA, LassoCMA,
nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA, pnnCMA, qdaCMA,
rfCMA, scdaCMA, shrinkldaCMA, svmCMA

Examples

### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression
golubX <- as.matrix(golub[,-1])
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### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run componentwise (logit)-boosting (not tuned)
result <- compBoostCMA(X=golubX, y=golubY, learnind=learnind, mstop = 500)
### show results
show(result)
ftable(result)
plot(result)
### multiclass example:
### load Khan data
data(khan)
### extract class labels
khanY <- khan[,1]
### extract gene expression
khanX <- as.matrix(khan[,-1])
### select learningset
set.seed(111)
learnind <- sample(length(khanY), size=floor(ratio*length(khanY)))
### run componentwise multivariate (logit)-boosting (not tuned)
result <- compBoostCMA(X=khanX, y=khanY, learnind=learnind, mstop = 1000)
### show results
show(result)
ftable(result)
plot(result)

dldaCMA-methods Diagonal Discriminant Analysis

Description

Performs a diagonal discriminant analysis under the assumption of a multivariate normal distribu-
tion in each classes (with equal, diagonally structured) covariance matrices. The method is also
known under the name ’naive Bayes’ classifier.

Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For further argument and output information, consult dldaCMA.
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dldaCMA Diagonal Discriminant Analysis

Description

Performs a diagonal discriminant analysis under the assumption of a multivariate normal distribu-
tion in each classes (with equal, diagonally structured) covariance matrices. The method is also
known under the name ’naive Bayes’ classifier.

For S4 method information, see dldaCMA-methods.

Usage

dldaCMA(X, y, f, learnind, models=FALSE, ...)

Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

WARNING: The class labels will be re-coded to range from 0 to K-1, where K
is the total number of different classes in the learning set.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.

learnind An index vector specifying the observations that belong to the learning set. May
be missing; in that case, the learning set consists of all observations and pre-
dictions are made on the learning set.

models a logical value indicating whether the model object shall be returned

... Currently unused argument.

Value

An object of class cloutput.

Note

As opposed to linear or quadratic discriminant analysis, variable selection is not strictly necessary.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>
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References

McLachlan, G.J. (1992).

Discriminant Analysis and Statistical Pattern Recognition.

Wiley, New York

See Also

compBoostCMA, ElasticNetCMA, fdaCMA, flexdaCMA, gbmCMA, knnCMA, ldaCMA, LassoCMA,
nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA, pnnCMA, qdaCMA,
rfCMA, scdaCMA, shrinkldaCMA, svmCMA

Examples

### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression
golubX <- as.matrix(golub[,-1])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run DLDA
dldaresult <- dldaCMA(X=golubX, y=golubY, learnind=learnind)
### show results
show(dldaresult)
ftable(dldaresult)
plot(dldaresult)
### multiclass example:
### load Khan data
data(khan)
### extract class labels
khanY <- khan[,1]
### extract gene expression
khanX <- as.matrix(khan[,-1])
### select learningset
set.seed(111)
learnind <- sample(length(khanY), size=floor(ratio*length(khanY)))
### run LDA
ldaresult <- dldaCMA(X=khanX, y=khanY, learnind=learnind)
### show results
show(dldaresult)
ftable(dldaresult)
plot(dldaresult)

ElasticNetCMA-methods
Classfication and variable selection by the ElasticNet



16 ElasticNetCMA

Description

Zou and Hastie (2004) proposed a combined L1/L2 penalty for regularization and variable selection.
The Elastic Net penalty encourages a grouping effect, where strongly correlated predictors tend to
be in or out of the model together. The computation is done with the function glmpath from the
package of the same name.

Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For references, further argument and output information, consult ElasticNetCMA

ElasticNetCMA Classfication and variable selection by the ElasticNet

Description

Zou and Hastie (2004) proposed a combined L1/L2 penalty for regularization and variable selection.
The Elastic Net penalty encourages a grouping effect, where strongly correlated predictors tend to
be in or out of the model together. The computation is done with the function glmpath from the
package of the same name.
The method can be used for variable selection alone, s. GeneSelection.
For S4 method information, see ElasticNetCMA-methods.

Usage

ElasticNetCMA(X, y, f, learnind, norm.fraction = 0.1, alpha=0.5, models=FALSE, ...)

Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet. note: by default, the predictors are

scaled to have unit variance and zero mean. Can be changed by passing
standardize = FALSE via the ... argument.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

WARNING: The class labels will be re-coded to range from 0 to K-1, where K
is the total number of different classes in the learning set.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.
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learnind An index vector specifying the observations that belong to the learning set. May
be missing; in that case, the learning set consists of all observations and pre-
dictions are made on the learning set.

norm.fraction
L1 Shrinkage intensity, expressed as the fraction of the coefficient L1 norm
compared to the maximum possible L1 norm (corresponds to fraction =
1). Lower values correspond to higher shrinkage. Note that the default (0.1)
need not produce good results, i.e. tuning of this parameter is recommended.

alpha The elasticnet mixing parameter, with 0<alpha<= 1. The penalty is defined as

(1-alpha)/2||beta||_2^2+alpha||beta||_1.

alpha=1 is the lasso penalty; Currently ’alpha<0.01’ not reliable, unless you
supply your own lambda sequence

models a logical value indicating whether the model object shall be returned

... Further arguments passed to the function glmpath from the package of the
same name.

Value

An object of class clvarseloutput.

Note

For a strongly related method, s. LassoCMA.
Up to now, this method can only be applied to binary classification.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

Christoph Bernau <bernau@ibe.med.uni-muenchen.de>

References

Zhou, H., Hastie, T. (2004).
Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society B,
67(2),301-320

Young-Park, M., Hastie, T. (2007)
L1-regularization path algorithm for generalized linear models.
Journal of the Royal Statistical Society B, 69(4), 659-677

See Also

compBoostCMA, dldaCMA, fdaCMA, flexdaCMA, gbmCMA, knnCMA, ldaCMA, LassoCMA,
nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA, pnnCMA, qdaCMA,
rfCMA, scdaCMA, shrinkldaCMA, svmCMA
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Examples

### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression
golubX <- as.matrix(golub[,-1])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run ElasticNet - penalized logistic regression (no tuning)
result <- ElasticNetCMA(X=golubX, y=golubY, learnind=learnind, norm.fraction = 0.2, alpha=0.5)
show(result)
ftable(result)
plot(result)

evaloutput-class "evaloutput"

Description

Object returned by the method evaluation.

Slots

score: A numeric vector of performance scores whose length depends on "scheme", s.below. It
equals the number of iterations (number of different datasets) if "scheme = iterationwise"
and the number of all observations in the complete dataset otherwise. As not necessarily all
observation must be predicted at least one time, score can also contain NAs for those obser-
vations not classified at all.

measure: performance measure used, s. evaluation.

scheme: scheme used, s. evaluation

method: name of the classifier that has been evaluated.

Methods

show Use show(evaloutput-object) for brief information.

summary Use summary(evaloutput-object) to apply the classic summary() function
to the slot score, s. summary,evaloutput-method

boxplot Use boxplot(evaloutput-object) to display a boxplot of the slot score, s.
boxplot,evaloutput-method.

obsinfo Use obsinfo(evaloutput-object, threshold) to display all observations con-
sistenly correctly or incorrectly classified (depending on the value of the argument threshold),
s. obsinfo.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>
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See Also

evaluation

evaluation-methods Evaluation of classifiers

Description

Evaluate classifiers for the following signatures:

Methods

clresult = "list" signature 1

For further argument and output information, consult evaluation.

evaluation Evaluation of classifiers

Description

The performance of classifiers can be evaluted by six different measures and two different schemes
that are described more precisely below.
For S4 method information, s. evaluation-methods.

Usage

evaluation(clresult, cltrain = NULL, cost = NULL, y = NULL, measure = c("misclassification", "sensitivity", "specificity", "average probability", "brier score", "auc", "0.632", "0.632+"),
scheme = c("iterationwise", "observationwise", "classwise"))

Arguments

clresult A list of objects of class cloutput or clvarseloutput

cltrain An object of class cloutput in which the whole dataset was used as learning
set. Only used if method = "0.632" or method = "0.632+" in order
to obtain an estimation for the resubsitution error rate.

cost An optional cost matrix used if measure = "misclassification". If
it is not specified (default), the cost is the usual indicator loss. Otherwise, entry
i,j of cost quantifies the loss when the true class is class i-1 and the pre-
dicted class is j-1, provided the conventional coding 0,...,K-1 in the case
of K classes is used. Usually, the matrix contains only non-negative entries with
zeros on the diagonal, but this is not obligatory. Make sure that the dimension
of the matrix matches the number of classes.

y A vector containing the true class labels. Only needed if scheme = "classwise".

measure Peformance measure to be used:

"misclassification" The missclassifcation rate.
"sensitivity" The sensitivity or 1-false negative rate. Can only be com-

puted for binary classifcation.
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"specificity" The specificity or 1-false positive rate. Can only be com-
puted for binary classification.

"average probability" The average probability assigned to the correct
class. Requirement is that the used classifier provides probability estima-
tions. The optimum performance is 1.

"brier score" The Brier Score is generally defined as <sum over all
observation i> <sum over all classes k> (I(y_i=k)-
P(k))^2, with I() denoting the indicator function and P(k) the esti-
mated probability for class k. The optimum performance is 0.

"auc" The Area under the Curve (AUC) belonging to the empirical ROC curve
computed from the estimated probabilities and the true class labels. Can
only be computed for binary classification and if "scheme = iterationwise",
s. below. S. also roc,cloutput-method.

"0.632" The 0.632 estimator (s. reference) for the misclassification rate (ap-
plied iteration- or) observationwise, if bootstrap learning sets have been
used. Note that cltrain must be provided.

"0.632+" The 0.632+ estimator (s. reference) for the misclassification rate
(applied iteration- or) observationwise, if bootstrap learning sets have been
used. Note that cltrain must be provided.

scheme "iterationwise" The performance measures listed above are computed
for each different iteration, i.e. each different learningset

"observationwise" The performance measures listed above (except for
"auc") are computed separately for each observation classified one or sev-
eral times, depending on the learningset scheme.

"classwise" The performance measures (exceptions: "auc", "0.632",
"0.632+") are computed separately for each class, averaged over both it-
erations and observations.

Value

An object of class evaloutput.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

Christoph Bernau <bernau@ibe.med.uni-muenchen.de>

References

Efron, B. and Tibshirani, R. (1997). Improvements on cross-validation: The .632+ bootstrap
method.
Journal of the American Statistical Association, 92, 548-560.

Slawski, M. Daumer, M. Boulesteix, A.-L. (2008) CMA - A comprehensive Bioconductor package
for supervised classification with high dimensional data. BMC Bioinformatics 9: 439

See Also

evaloutput, classification, compare
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Examples

### simple linear discriminant analysis example using bootstrap datasets:
### datasets:
data(golub)
golubY <- golub[,1]
### extract gene expression from first 10 genes
golubX <- as.matrix(golub[,2:11])
### generate 25 bootstrap datasets
set.seed(333)
bootds <- GenerateLearningsets(y = golubY, method = "bootstrap", ntrain = 30, niter = 10, strat = TRUE)
### run classification()
ldalist <- classification(X=golubX, y=golubY, learningsets = bootds, classifier=ldaCMA)
### Evaluation:
eval_iter <- evaluation(ldalist, scheme = "iter")
eval_obs <- evaluation(ldalist, scheme = "obs")
show(eval_iter)
show(eval_obs)
summary(eval_iter)
summary(eval_obs)
### auc with boxplot
eval_auc <- evaluation(ldalist, scheme = "iter", measure = "auc")
boxplot(eval_auc)
### which observations have often been misclassified ?
obsinfo(eval_obs, threshold = 0.75)

fdaCMA-methods Fisher’s Linear Discriminant Analysis

Description

Fisher’s Linear Discriminant Analysis constructs a subspace of ’optimal projections’ in which clas-
sification is performed. The directions of optimal projections are computed by the function cancor
from the package stats. For an exhaustive treatment, see e.g. Ripley (1996).

Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For references, further argument and output information, consult fdaCMA.
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fdaCMA Fisher’s Linear Discriminant Analysis

Description

Fisher’s Linear Discriminant Analysis constructs a subspace of ’optimal projections’ in which clas-
sification is performed. The directions of optimal projections are computed by the function cancor
from the package stats. For an exhaustive treatment, see e.g. Ripley (1996).

For S4 method information, see fdaCMA-methods.

Usage

fdaCMA(X, y, f, learnind, comp = 1, plot = FALSE,models=FALSE)

Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

WARNING: The class labels will be re-coded to range from 0 to K-1,
where K is the total number of different classes in the learning set.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.

learnind An index vector specifying the observations that belong to the learning set. May
be missing; in that case, the learning set consists of all observations and pre-
dictions are made on the learning set.

comp Number of discriminant coordinates (projections) to compute. Default is one,
must be smaller than or equal to K-1, where K is the number of classes.

plot Should the projections onto the space spanned by the optimal projection direc-
tions be plotted ? Default is FALSE.

models a logical value indicating whether the model object shall be returned

Value

An object of class cloutput.

Note

Excessive variable selection has usually to performed before fdaCMA can be applied in the p > n
setting. Not reducing the number of variables can result in an error message.
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Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

References

Ripley, B.D. (1996)

Pattern Recognition and Neural Networks.

Cambridge University Press

See Also

compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA, gbmCMA, knnCMA,
ldaCMA, LassoCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA,
pnnCMA, qdaCMA, rfCMA, scdaCMA, shrinkldaCMA, svmCMA

Examples

### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression from first 10 genes
golubX <- as.matrix(golub[,2:11])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run FDA
fdaresult <- fdaCMA(X=golubX, y=golubY, learnind=learnind, comp = 1, plot = TRUE)
### show results
show(fdaresult)
ftable(fdaresult)
plot(fdaresult)
### multiclass example:
### load Khan data
data(khan)
### extract class labels
khanY <- khan[,1]
### extract gene expression from first 10 genes
khanX <- as.matrix(khan[,2:11])
### select learningset
set.seed(111)
learnind <- sample(length(khanY), size=floor(ratio*length(khanY)))
### run FDA
fdaresult <- fdaCMA(X=khanX, y=khanY, learnind=learnind, comp = 2, plot = TRUE)
### show results
show(fdaresult)
ftable(fdaresult)
plot(fdaresult)
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filter Filter functions for Gene Selection

Description

The functions listed above are usually not called by the user but via GeneSelection.

Usage

ttest(X, y, learnind, ...)
welchtest(X, y, learnind, ...)
ftest(X, y, learnind,...)
kruskaltest(X, y, learnind,...)
limmatest(X, y, learnind,...)
golubcrit(X, y, learnind,...)
rfe(X, y, learnind,...)
shrinkcat(X,y,learnind,...)

Arguments

X A numeric matrix of gene expression values.

y A numeric vector of class labels.

learnind An index vector specifying the observations that belong to the learning set.

... Currently unused argument.

Value

An object of class varseloutput.

References

Slawski, M. Daumer, M. Boulesteix, A.-L. (2008) CMA - A comprehensive Bioconductor package
for supervised classification with high dimensional data. BMC Bioinformatics 9: 439

flexdaCMA-methods Flexible Discriminant Analysis

Description

This method is experimental.

It is easy to show that, after appropriate scaling of the predictor matrix X, Fisher’s Linear Discrimi-
nant Analysis is equivalent to Discriminant Analysis in the space of the fitted values from the linear
regression of the nlearn x K indicator matrix of the class labels on X. This gives rise to ’non-
linear discrimant analysis’ methods that expand X in a suitable, more flexible basis. In order to
avoid overfitting, penalization is used. In the implemented version, the linear model is replaced by
a generalized additive one, using the package mgcv.
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Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For further argument and output information, consult flexdaCMA.

flexdaCMA Flexible Discriminant Analysis

Description

This method is experimental.

It is easy to show that, after appropriate scaling of the predictor matrix X, Fisher’s Linear Discrimi-
nant Analysis is equivalent to Discriminant Analysis in the space of the fitted values from the linear
regression of the nlearn x K indicator matrix of the class labels on X. This gives rise to ’non-
linear discrimant analysis’ methods that expand X in a suitable, more flexible basis. In order to
avoid overfitting, penalization is used. In the implemented version, the linear model is replaced by
a generalized additive one, using the package mgcv.

For S4 method information, s. flexdaCMA-methods.

Usage

flexdaCMA(X, y, f, learnind, comp = 1, plot = FALSE, models=FALSE, ...)

Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

WARNING: The class labels will be re-coded to range from 0 to K-1, where K
is the total number of different classes in the learning set.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.

learnind An index vector specifying the observations that belong to the learning set. May
be missing; in that case, the learning set consists of all observations and pre-
dictions are made on the learning set.

comp Number of discriminant coordinates (projections) to compute. Default is one,
must be smaller than or equal to K-1, where K is the number of classes.
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plot Should the projections onto the space spanned by the optimal projection direc-
tions be plotted ? Default is FALSE.

models a logical value indicating whether the model object shall be returned

... Further arguments passed to the function gam from the package mgcv.

Value

An object of class cloutput.

Note

Excessive variable selection has usually to performed before flexdaCMA can be applied in the p
> n setting. Recall that the original predictor dimension is even enlarged, therefore, it should be
applied only with very few variables.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

References

Ripley, B.D. (1996)

Pattern Recognition and Neural Networks.

Cambridge University Press

See Also

compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, gbmCMA, knnCMA, ldaCMA, LassoCMA,
nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA, pnnCMA, qdaCMA,
rfCMA, scdaCMA, shrinkldaCMA, svmCMA

Examples

### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression from first 5 genes
golubX <- as.matrix(golub[,2:6])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run flexible Discriminant Analysis
result <- flexdaCMA(X=golubX, y=golubY, learnind=learnind, comp = 1)
### show results
show(result)
ftable(result)
plot(result)
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ftable Cross-tabulation of predicted and true class labels

Description

An object of class cloutput contains (among others) the slot y and yhat. The former contains
the true, the last the predicted class labels. Both are cross-tabulated in order to obtain a so-called
confusion matrix. Counts out of the diagonal are misclassifications.

Arguments

x An object of class cloutput

... Currently unused argument.

Value

No return.

Author(s)

Martin Slawski <martin.slawski@campus.lmu.de>

Anne-Laure Boulesteix http://www.slcmsr.net/boulesteix

See Also

For more advanced evaluation: evaluation

gbmCMA-methods Tree-based Gradient Boosting

Description

Roughly speaking, Boosting combines ’weak learners’ in a weighted manner in a stronger ensem-
ble. This method calls the function gbm.fit from the package gbm. The ’weak learners’ are
simple trees that need only very few splits (default: 1).

Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For further argument and output information, consult gbmCMA.

http://www.slcmsr.net/boulesteix
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gbmCMA Tree-based Gradient Boosting

Description

Roughly speaking, Boosting combines ’weak learners’ in a weighted manner in a stronger ensem-
ble. This method calls the function gbm.fit from the package gbm. The ’weak learners’ are
simple trees that need only very few splits (default: 1).

For S4 method information, see gbmCMA-methods.

Usage

gbmCMA(X, y, f, learnind, models=FALSE,...)

Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

WARNING: The class labels will be re-coded to range from 0 to K-1, where K
is the total number of different classes in the learning set.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.

learnind An index vector specifying the observations that belong to the learning set. May
be missing; in that case, the learning set consists of all observations and pre-
dictions are made on the learning set.

models a logical value indicating whether the model object shall be returned

... Further arguments passed to the function gbm.fit from the package of the
same name. Worth mentionning are

ntrees Number of trees to fit (size of the ensemble), defaults to 100. This
parameter should be optimized using tune.

shrinkage The learning rate (default is 0.001). Usually fixed to a very low
value.

distribution Loss function to be used. Default is "bernoulli", i.e.
LogitBoost, a (less robust) alternative is "adaboost".

interaction.depth Number of splits used by the ’weak learner’ (single
decision tree). Default is 1.

Value

An onject of class cloutput.
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Note

Up to now, this method can only be applied to binary classification.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

References

Ridgeway, G. (1999).

The state of boosting.

Computing Science and Statistics, 31:172-181

Friedman, J. (2001).

Greedy Function Approximation: A Gradient Boosting Machine.

Annals of Statistics 29(5):1189-1232.

See Also

compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA, knnCMA, ldaCMA,
LassoCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA, pnnCMA,
qdaCMA, rfCMA, scdaCMA, shrinkldaCMA, svmCMA

Examples

### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression
golubX <- as.matrix(golub[,-1])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run tree-based gradient boosting (no tuning)
gbmresult <- gbmCMA(X=golubX, y=golubY, learnind=learnind, n.trees = 500)
show(gbmresult)
ftable(gbmresult)
plot(gbmresult)

GenerateLearningsets
Repeated Divisions into learn- and tets sets

Description

Due to very small sample sizes, the classical division learnset/testset does not give accurate infor-
mation about the classification performance. Therefore, several different divisions should be used
and aggregated. The implemented methods are discussed in Braga-Neto and Dougherty (2003) and
Molinaro et al. (2005) whose terminology is adopted.

This function is usually the basis for all deeper analyses.
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Usage

GenerateLearningsets(n, y, method = c("LOOCV", "CV", "MCCV", "bootstrap"),
fold = NULL, niter = NULL, ntrain = NULL, strat = FALSE)

Arguments

n The total number of observations in the available data set. May be missing if
y is provided instead.

y A vector of class labels, either numeric or a factor. Must be given if
strat=TRUE or n is not specified.

method Which kind of scheme should be used to generate divisions into learning sets
and test sets ? Can be one of the following:

"LOOCV" Leaving-One-Out Cross Validation.

"CV" (Ordinary) Cross-Validation. Note that fold must as well be specified.

"MCCV" Monte-Carlo Cross Validation, i.e. random divisions into learning
sets with ntrain(s.below) observations and tests sets with ntrain ob-
servations.

"bootstrap" Learning sets are generated by drawing ntrain times with re-
placement from all observations. Those not drawn not all form the test set.

fold Gives the number of CV-groups. Used only when method="CV"

niter Number of iterations (s.details).

ntrain Number of observations in the learning sets. Used only when method="MCCV"
or method="bootstrap".

strat Logical. Should stratified sampling be performed, i.e. the proportion of obser-
vations from each class in the learning sets be the same as in the whole data set
?

Does not apply for method = "LOOCV".

Details

• When method="CV", niter gives the number of times the whole CV-procedure is re-
peated. The output matrix has then foldxniter rows. When method="MCCV" or method="bootstrap",
niter is simply the number of considered learning sets.

• Note that method="CV",fold=n is equivalent to method="LOOCV".

Value

An object of class learningsets

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

Christoph Bernau <bernau@ibe.med.uni-muenchen.de>
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References

Braga-Neto, U.M., Dougherty, E.R. (2003).

Is cross-validation valid for small-sample microarray classification ?

Bioinformatics, 20(3), 374-380

Molinaro, A.M., Simon, R., Pfeiffer, R.M. (2005).

Prediction error estimation: a comparison of resampling methods.

Bioinformatics, 21(15), 3301-3307

Slawski, M. Daumer, M. Boulesteix, A.-L. (2008) CMA - A comprehensive Bioconductor package
for supervised classification with high dimensional data. BMC Bioinformatics 9: 439

See Also

learningsets, GeneSelection, tune, classification

Examples

# LOOCV
loo <- GenerateLearningsets(n=40, method="LOOCV")
show(loo)
# five-fold-CV
CV5 <- GenerateLearningsets(n=40, method="CV", fold=5)
show(loo)
# MCCV
mccv <- GenerateLearningsets(n=40, method = "MCCV", niter=3, ntrain=30)
show(mccv)
# Bootstrap
boot <- GenerateLearningsets(n=40, method="bootstrap", niter=3)
# stratified five-fold-CV
set.seed(113)
classlabels <- sample(1:3, size = 50, replace = TRUE, prob = c(0.3, 0.5, 0.2))
CV5strat <- GenerateLearningsets(y = classlabels, method="CV", fold=5, strat = TRUE)
show(CV5strat)

genesel-class "genesel"

Description

Object returned from a call to GeneSelection

Slots

rankings: A list of matrices. For the two-class case and the multi-class case where a genuine
multi-class method has been used for variable selection, the length of the list is one. Otherwise,
it is named according to the different binary scenarios (e.g. 1 vs 3). Each list element is a
matrix with rows corresponding to iterations (different learningsets) and columns to
variables. Each row thus contains an index vector representing the order of the variables with
respect to their variable importance (s. slot importance)

importance: A list of matrices, with the same structure as described for the slot rankings.
Each row of these matrices are ordered according to rankings and contain the variable
importance measure (absolute value of test statistic or regression coefficient).
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method: Name of the method used for variable selection, s. GeneSelection.

scheme: The scheme used in the case of a non-binary response, one of "pairwise", "one-
vs-all" or "multiclass".

Methods

show Use show(genesel-object) for brief information

toplist Use toplist(genesel-object, k=10, iter = 1) to display the top first 10
variables and their variable importance for the first iteration (first learningset), s.toplist.

plot Use plot(genesel-object, k=10, iter=1) to display a barplot of the variable im-
portance of the top first 10 variables, s. plot,genesel-method

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

See Also

GeneSelection

GeneSelection-methods
General method for variable selection with various methods

Description

Performs gene selection for the following signatures:

Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For further argument and output information, consult GeneSelection.
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GeneSelection General method for variable selection with various methods

Description

For different learning data sets as defined by the argument learningsets, this method ranks the
genes from the most relevant to the less relevant using one of various ’filter’ criteria or provides
a sparse collection of variables (Lasso, ElasticNet, Boosting). The results are typically used for
variable selection for the classification procedure that follows.
For S4 class information, s. GeneSelection-methods.

Usage

GeneSelection(X, y, f, learningsets, method = c("t.test", "welch.test", "wilcox.test", "f.test", "kruskal.test", "limma", "rfe", "rf", "lasso", "elasticnet", "boosting", "golub", "shrinkcat"), scheme, trace = TRUE, ...)

Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet.
• missing, if X is a data.frame and a proper formula f is provided.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.

learningsets An object of class learningsets. May be missing, then the complete datasets
is used as learning set.

method A character specifying the method to be used:

t.test two-sample t.test (equal variances for both classes assumed).
welch.test Welch modification of the t.test (unequal variances for both classes).
wilcox.test Wilcoxon rank sum test.
f.test F test belonging to the linear hypothesis that the mean is the same

for all classes. Usually used for the multiclass scheme, is equivalent to
method = t.test in the two-class case.

kruskal.test Multi-class generalization of the Wilcoxon rank sum test and
the nonparametric pendant to the F test, respectively.

limma ’Moderated t’ statistic for the two-class case and ’moderated F’ statistic
for the multiclass case, described in Smyth (2003). Requires the package
limma.

rfe One-step Recursive Feature Elimination, based on the Support Vector Ma-
chine. The method is decribed in Guyon et al. (2002). Requires the package
e1071. Take care that appropriate hyperparameters are passed by the ...
argument.

rf Random Forest Variable Importance Measure. Requires the package randomForest
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lasso L1 penalized logistic regression leads to sparsity with respect to the
variables used. Calls the function LassoCMA, which requires the pack-
age glmpath. warning: Take care that appropriate hyperparameters are
passed by the ... argument.

elasticnet Penalized logistic regression with both L1 and L2 penalty, claimed
by Zhou and Hastie (2004) to select ’variable groups’. Calls the function
ElasticNetCMA, which requires the package glmpath. warning: Take
care that appropriate hyperparameters are passed by the ... argument.

boosting Componentwise boosting (Buehlmann and Yu, 2003) has been shown
to mimic the LASSO (Efron et al., 2004; Buehlmann and Yu, 2006). Calls
the function compBoostCMA Take care that appropriate hyperparameters
are passed by the ... argument.

golub The (theoretically unfounded) variable selection criterion used by Golub
et al. (1999), s. golub.

shrinkcat The correlation-adjusted t-score from Zuber and Strimmer (2009)

scheme The scheme to be used in the case of a non-binary response. Must be one
of "pairwise","one-vs-all" or "multiclass". The last case only
makes sense if method is one of f.test, limma, rf, boosting, which
can directly be applied to the multi class case.

trace Should the progress be traced ? Default is TRUE.

... Further arguments passed to the function performing variable selection, s. method.

Value

An object of class genesel.

Note

most of the methods described above are only apt for the binary classification case. The only ones
that can be used without restriction in the multiclass case are

• f.test

• kruskal.test

• rf

• boosting

For the rest, pairwise or one-vs-all schemes are used.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

Christoph Bernau <bernau@ibe.med.uni-muenchen.de>

References

Smyth, G. K., Yang, Y.-H., Speed, T. P. (2003).
Statistical issues in microarray data analysis.
Methods in Molecular Biology 224, 111-136.
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Guyon, I., Weston, J., Barnhill, S., Vapnik, V. (2002).
Gene Selection for Cancer Classification using support vector machines. Journal of Machine Learn-
ing Research, 46, 389-422

Zhou, H., Hastie, T. (2004).
Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society B,
67(2),301-320

Buelmann, P., Yu, B. (2003).
Boosting with the L2 loss: Regression and Classification.
Journal of the American Statistical Association, 98, 324-339

Efron, B., Hastie, T., Johnstone, I., Tibshirani, R. (2004).
Least Angle Regression.
Annals of Statistics, 32:407-499

Buehlmann, P., Yu, B. (2006).
Sparse Boosting.
Journal of Machine Learning Research, 7- 1001:1024

Slawski, M. Daumer, M. Boulesteix, A.-L. (2008) CMA - A comprehensive Bioconductor package
for supervised classification with high dimensional data. BMC Bioinformatics 9: 439

See Also

filter, GenerateLearningsets, tune, classification

Examples

# load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression from first 10 genes
golubX <- as.matrix(golub[,-1])
### Generate five different learningsets
set.seed(111)
five <- GenerateLearningsets(y=golubY, method = "CV", fold = 5, strat = TRUE)
### simple t-test:
selttest <- GeneSelection(golubX, golubY, learningsets = five, method = "t.test")
### show result:
show(selttest)
toplist(selttest, k = 10, iter = 1)
plot(selttest, iter = 1)

golub ALL/AML dataset of Golub et al. (1999)

Description

s. below

Usage

data(golub)
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Format

A data frame with 38 observations and 3052 variables. The first column (named golub.cl)
contains the tumor classes (ALL = acute lymphatic leukaemia, AML = acute myeloid leukaemia).\
golub.cl: a factor with levels ALL AML.\ X2-X3051: Gene expression values.

Source

Adopted from the dataset in the package multtest.

References

Golub, T., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P.,

Coller, H., Loh, M. L., Downing, J., Caligiuri, M. A., Bloomfeld, C. D., Lander, E. S. (1999).

Molecular classification of cancer: class discovery and class prediction by gene expression moni-
toring.

Science 286, 531-537.

Examples

data(golub)

internals Internal functions

Description

Not intended to be called directly by the user.

join-methods Combine list elements returned by the method classification

Description

The list of objects of class cloutput can be unified into one object for the following signatures:

Methods

cloutputlist = "list" signature 1

For further argument and output information, consult join.
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join Combine list elements returned by the method classification

Description

The method classification returns a list of class cloutput or clvarseloutput. It is
often more convenient to work with an object of class cloutput instead with a whole list, e.g.
because the convenience method defined for that class can be used.

For S4 method information, s. join-methods

Usage

join(cloutputlist)

Arguments

cloutputlist A list of objects of classes cloutput or clvarseloutput, usually that
returned by a call to the method classification. The only requirement for
a succesful join is that the used dataset and classfier are the same for each list
element.

Value

An object of class cloutput. warning:If the elements of cloutputlist have originally been
of class clvarseloutput, the slot varsel will be dropped !

Note

The result of the join method is incompatible with the methods evaluation, compare. These
require the lists returned by classification.

See Also

classification, evaluation

khan Small blue round cell tumor dataset of Khan et al. (2001)

Description

s. below

Usage

data(khan)
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Format

A data frame with 63 observations on the following 2309 variables. The first column (named
khanY) contains the tumor classes (BL = Burkitt Lymphoma, EWS = Ewing Sarcoma, NB = Neuro
Blastoma, RMS = Rhabdomyosarcoma).\

khanY: a factor with levels BL EWS NB RMS \ X2-X2309: Gene expression values.

Source

Adopted from the dataset in the package pamr.

References

Khan, J., Wei, J. S., Ringner, M., Saal, L. H., Ladanyi, M., Westermann, F., Berthold, F., Schwab,
M., Antonescu, C. R., Peterson, C., Meltzer, P. S., (2001).

Classification and diagnostic prediction of cancers using gene expression profiling and artificial
neural networks.

Nature Medicine 7, 673-679.

Examples

data(khan)

knnCMA-methods Nearest Neighbours

Description

Ordinary k nearest neighbours algorithm from the very fast implementation in the package class

Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For further argument and output information, consult knnCMA.
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knnCMA Nearest Neighbours

Description

Ordinary k nearest neighbours algorithm from the very fast implementation in the package class.

For S4 method information, see knnCMA-methods.

Usage

knnCMA(X, y, f, learnind, models=FALSE, ...)

Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

WARNING: The class labels will be re-coded to range from 0 to K-1, where K
is the total number of different classes in the learning set.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.

learnind An index vector specifying the observations that belong to the learning set. Must
not be missing for this method.

models a logical value indicating whether the model object shall be returned

... Further arguments to be passed to knn from the package class, in particular
the number of nearest neighbours to use (argument k).

Value

An object of class cloutput.

Note

Class probabilities are not returned. For a probabilistic variant of knn, s. pknnCMA.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>
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References

Ripley, B.D. (1996)

Pattern Recognition and Neural Networks.

Cambridge University Press

See Also

compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA, gbmCMA, ldaCMA,
LassoCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA, pnnCMA,
qdaCMA, rfCMA, scdaCMA, shrinkldaCMA, svmCMA

Examples

### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression from first 10 genes
golubX <- as.matrix(golub[,-1])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run k-nearest neighbours
result <- knnCMA(X=golubX, y=golubY, learnind=learnind, k = 3)
### show results
show(result)
ftable(result)
### multiclass example:
### load Khan data
data(khan)
### extract class labels
khanY <- khan[,1]
### extract gene expression
khanX <- as.matrix(khan[,-1])
### select learningset
set.seed(111)
learnind <- sample(length(khanY), size=floor(ratio*length(khanY)))
### run knn
result <- knnCMA(X=khanX, y=khanY, learnind=learnind, k = 5)
### show results
show(result)
ftable(result)

LassoCMA-methods L1 penalized logistic regression

Description

The Lasso (Tibshirani, 1996) is one of the most popular tools for simultaneous shrinkage and vari-
able selection. Recently, Friedman, Hastie and Tibshirani (2008) have developped and algorithm to
compute the entire solution path of the Lasso for an arbitrary generalized linear model, implemented
in the package glmnet. The method can be used for variable selection alone, s. GeneSelection
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Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For references, further argument and output information, consult LassoCMA.

LassoCMA L1 penalized logistic regression

Description

The Lasso (Tibshirani, 1996) is one of the most popular tools for simultaneous shrinkage and
variable selection. Recently, Friedman, Hastie and Tibshirani (2008) have developped and algo-
rithm to compute the entire solution path of the Lasso for an arbitrary generalized linear model,
implemented in the package glmnet. The method can be used for variable selection alone, s.
GeneSelection.
For S4 method information, see LassoCMA-methods.

Usage

LassoCMA(X, y, f, learnind, norm.fraction = 0.1,models=FALSE,...)

Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet. note: by default, the predictors are

scaled to have unit variance and zero mean. Can be changed by passing
standardize = FALSE via the ... argument.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

WARNING: The class labels will be re-coded to range from 0 to K-1, where K
is the total number of different classes in the learning set.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.

learnind An index vector specifying the observations that belong to the learning set. May
be missing; in that case, the learning set consists of all observations and pre-
dictions are made on the learning set.
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norm.fraction
L1 Shrinkage intensity, expressed as the fraction of the coefficient L1 norm
compared to the maximum possible L1 norm (corresponds to fraction =
1). Lower values correspond to higher shrinkage. Note that the default (0.1)
need not produce good results, i.e. tuning of this parameter is recommended.

models a logical value indicating whether the model object shall be returned

... Further arguments passed to the function glmpath from the package of the
same name.

Value

An object of class clvarseloutput.

Note

For a strongly related method, s. ElasticNetCMA.
Up to now, this method can only be applied to binary classification.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>
Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>
Christoph Bernau <bernau@ibe.med.uni-muenchen.de>

References

Tibshirani, R. (1996)
Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society B, 58(1), 267-288

Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization
Paths for Generalized Linear Models via Coordinate Descent
http://www-stat.stanford.edu/~hastie/Papers/glmnet.pdf

See Also

compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA, gbmCMA, knnCMA,
ldaCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA, pnnCMA,
qdaCMA, rfCMA, scdaCMA, shrinkldaCMA, svmCMA

Examples

### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression
golubX <- as.matrix(golub[,-1])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run L1 penalized logistic regression (no tuning)
lassoresult <- LassoCMA(X=golubX, y=golubY, learnind=learnind, norm.fraction = 0.2)
show(lassoresult)

http://www-stat.stanford.edu/~hastie/Papers/glmnet.pdf
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ftable(lassoresult)
plot(lassoresult)

ldaCMA-methods Linear Discriminant Analysis

Description

Performs a linear discriminant analysis for the following signatures:

Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For further argument and output information, consult ldaCMA.

ldaCMA Linear Discriminant Analysis

Description

Performs a linear discriminant analysis under the assumption of a multivariate normal distribution
in each classes (with equal, but generally structured) covariance matrices. The function lda from
the package MASS is called for computation.

For S4 method information, see ldaCMA-methods.

Usage

ldaCMA(X, y, f, learnind, models=FALSE, ...)

Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

WARNING: The class labels will be re-coded to range from 0 to K-1, where K
is the total number of different classes in the learning set.
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f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.

learnind An index vector specifying the observations that belong to the learning set. May
be missing; in that case, the learning set consists of all observations and pre-
dictions are made on the learning set.

models a logical value indicating whether the model object shall be returned

... Further arguments to be passed to lda from the package MASS

Value

An object of class cloutput.

Note

Excessive variable selection has usually to performed before ldaCMA can be applied in the p > n
setting. Not reducing the number of variables can result in an error message.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

References

McLachlan, G.J. (1992).

Discriminant Analysis and Statistical Pattern Recognition.

Wiley, New York

See Also

compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA, gbmCMA, knnCMA,
LassoCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA, pnnCMA,
qdaCMA, rfCMA, scdaCMA, shrinkldaCMA, svmCMA

Examples

### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression from first 10 genes
golubX <- as.matrix(golub[,2:11])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run LDA
ldaresult <- ldaCMA(X=golubX, y=golubY, learnind=learnind)
### show results
show(ldaresult)
ftable(ldaresult)
plot(ldaresult)
### multiclass example:
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### load Khan data
data(khan)
### extract class labels
khanY <- khan[,1]
### extract gene expression from first 10 genes
khanX <- as.matrix(khan[,2:11])
### select learningset
set.seed(111)
learnind <- sample(length(khanY), size=floor(ratio*length(khanY)))
### run LDA
ldaresult <- ldaCMA(X=khanX, y=khanY, learnind=learnind)
### show results
show(ldaresult)
ftable(ldaresult)
plot(ldaresult)

learningsets-class "learningsets"

Description

An object returned from GenerateLearningsets which is usually passed as arguments to
GeneSelection, tune and classification.

Slots

learnmatrix: A matrix of dimension niter x ntrain. Each row contains the indices of
those observations representing the learningset for one iteration. If method = CV, zeros
appear due to rounding issues.

method: The method used to generate the learnmatrix, s.GenerateLearningsets

ntrain: Number of observations in one learning set.If method = CV, this number is not at-
tained for all iterations, due to rounding issues.

iter: Number of iterations (different learningsets) that are stored in learnmatrix.

Methods

• showUse show(learningsets-object) for brief information.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

Christoph Bernau <bernau@ibe.med.uni-muenchen.de>

See Also

GenerateLearningsets, GeneSelection, tune, classification
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nnetCMA-methods Feed-Forward Neural Networks

Description

This method provides access to the function nnet in the package of the same name that trains
Feed-forward Neural Networks with one hidden layer.

Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For further argument and output information, consult nnetCMA.

nnetCMA Feed-forward Neural Networks

Description

This method provides access to the function nnet in the package of the same name that trains
Feed-forward Neural Networks with one hidden layer.
For S4 method information, see nnetCMA-methods

Usage

nnetCMA(X, y, f, learnind, eigengenes = FALSE, models=FALSE,...)

Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

WARNING: The class labels will be re-coded to range from 0 to K-1, where K
is the total number of different classes in the learning set.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.
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learnind An index vector specifying the observations that belong to the learning set. May
be missing; in that case, the learning set consists of all observations and pre-
dictions are made on the learning set.

eigengenes Should the training be performed be in the space of eigengenes obtained from
a singular value decomposition of the Gene expression data matrix ? Default
is FALSE; in this case, variable selection is necessary to reduce the number of
weights that have to be optimized.

models a logical value indicating whether the model object shall be returned

... Further arguments passed to the function nnet from the package of the same
name.
Important parameters are:

• "size", i.e. the number of units in the hidden layer
• "decay" for weight decay.

Value

An object of class cloutput.

Note

• Excessive variable selection is usually necessary if eigengenes = FALSE

• Different runs of this method on the same dataset not necessarily produce the same results due
to the fact that optimization for Feed-Forward Neural Networks is rather difficult and depends
on the choice of (normally randomly chosen) starting values for the network weights.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

Christoph Bernau <bernau@ibe.med.uni-muenchen.de>

References

Ripley, B.D. (1996)
Pattern Recognition and Neural Networks.
Cambridge University Press

See Also

compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA, gbmCMA, knnCMA,
ldaCMA, LassoCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA,
pnnCMA, qdaCMA, rfCMA, scdaCMA, shrinkldaCMA, svmCMA

Examples

### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression from first 10 genes
golubX <- as.matrix(golub[,2:11])
### select learningset
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ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run nnet (not tuned)
nnetresult <- nnetCMA(X=golubX, y=golubY, learnind=learnind, size = 3, decay = 0.01)
### show results
show(nnetresult)
ftable(nnetresult)
plot(nnetresult)
### in the space of eigengenes (not tuned)
golubXfull <- as.matrix(golubX[,-1])
nnetresult <- nnetCMA(X=golubXfull, y=golubY, learnind = learnind, eigengenes = TRUE,

size = 3, decay = 0.01)
### show results
show(nnetresult)
ftable(nnetresult)
plot(nnetresult)

obsinfo Classifiability of observations

Description

Some observations are harder to classify than others. It is frequently of interest to know which
observations are consistenly misclassified; these are candiates for outliers or wrong class labels.

Arguments

object An object of class evaluation, generated with scheme = "observationwise"

threshold threshold value of (observation-wise) performance measure, s. evaluation
that has to be exceeded in order to speak of consistent misclassification. If
measure = "average probability", then values below threshold
are regarded as consistent misclassification. Note that the default values 1 is not
sensible in that case

show Should the information be printed ? Default is TRUE.

Details

As not all observation must have been classified at least once, observations not classified at all are
also shown.

Value

A list with two components

misclassification
A data.frame containing the indices of consistenly misclassfied observations
and the corresponding performance measure.

notclassified
The indices of those observations not classfied at all, s. details.
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Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

References

Slawski, M. Daumer, M. Boulesteix, A.-L. (2008) CMA - A comprehensive Bioconductor package
for supervised classification with high dimensional data. BMC Bioinformatics 9: 439

See Also

evaluation

pknnCMA-methods Probabilistic nearest neighbours

Description

Nearest neighbour variant that replaces the simple voting scheme by a weighted one (based on
euclidean distances). This is also used to compute class probabilities.

Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For further argument and output information, consult pknnCMA.

pknnCMA Probabilistic Nearest Neighbours

Description

Nearest neighbour variant that replaces the simple voting scheme by a weighted one (based on
euclidean distances). This is also used to compute class probabilities.

For S4 class information, see pknnCMA-methods.

Usage

pknnCMA(X, y, f, learnind, beta = 1, k = 1, models=FALSE, ...)
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Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

WARNING: The class labels will be re-coded to range from 0 to K-1, where K
is the total number of different classes in the learning set.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.

learnind An index vector specifying the observations that belong to the learning set. Must
not be missing for this method.

beta Slope parameter for the logistic function which is used for the computation of
class probabilities. The default value (1) need not produce reasonable results
and can produce warnings.

k Number of nearest neighbours to use.

models a logical value indicating whether the model object shall be returned

... Currently unused argument.

Details

The algorithm is as follows:

• Determine the k nearest neighbours

• For each class represented among these, compute the average euclidean distance.

• The negative distances are plugged into the logistic function with parameter beta.

• Classify into the class with highest probability.

Value

An object of class cloutput.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

See Also

compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA, gbmCMA, knnCMA,
ldaCMA, LassoCMA, nnetCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA, pnnCMA,
qdaCMA, rfCMA, scdaCMA, shrinkldaCMA, svmCMA
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Examples

### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression from first 10 genes
golubX <- as.matrix(golub[,-1])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run probabilistic k-nearest neighbours
result <- pknnCMA(X=golubX, y=golubY, learnind=learnind, k = 3)
### show results
show(result)
ftable(result)
plot(result)

Planarplot-methods Visualize Separability of different classes

Description

Given two variables, the methods trains a classifier (argument classifier) based on these two
variables and plots the resulting class regions, learning- and test observations in the plane.

Appropriate variables are usually found by GeneSelection.

Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For further argument and output information, consult Planarplot.

Planarplot Visualize Separability of different classes

Description

Given two variables, the methods trains a classifier (argument classifier) based on these two
variables and plots the resulting class regions, learning- and test observations in the plane.

Appropriate variables are usually found by GeneSelection.

For S4 method information, s. Planarplot-methods.

Usage

Planarplot(X, y, f, learnind, predind, classifier, gridsize = 100, ...)
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Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.

learnind An index vector specifying the observations that belong to the learning set. May
be missing; in that case, the learning set consists of all observations and pre-
dictions are made on the learning set.

predind A vector containing exactly two indices that denote the two variables used for
classification.

classifier Name of function ending with CMA indicating the classifier to be used.

gridsize The gridsize used for two-dimensional plotting.
For both variables specified in predind, an equidistant grid of size gridsize
is created. The resulting two grids are then combined to obtain gridsize^2
points in the real plane which are used to draw the class regions. Defaults to 100
which is usually a reasonable choice, but takes some time.

... Further argument passed to classifier.

Value

No return.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>. Idea is from the
MLInterfaces package, contributed by Jess Mar, Robert Gentleman and Vince Carey.

See Also

GeneSelection, compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA,
gbmCMA, knnCMA, ldaCMA, LassoCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA,
pls_rfCMA, pnnCMA, qdaCMA, rfCMA, scdaCMA, shrinkldaCMA, svmCMA

Examples

### simple linear discrimination for the golub data:
data(golub)
golubY <- golub[,1]
golubX <- as.matrix(golub[,-1])
golubn <- nrow(golubX)
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set.seed(111)
learnind <- sample(golubn, size=floor(2/3*golubn))
Planarplot(X=golubX, y=golubY, learnind=learnind, predind=c(2,4),

classifier=ldaCMA)

plot Probability plot

Description

A popular way of visualizing the output of classifier is to plot, separately for each class, the pre-
dicted probability of each predicted observations for the respective class. For this purpose, the
plot area is divided into K parts, where K is the number of classes. Predicted observations are as-
signed, according to their true class, to one of those parts. Then, for each part and each predicted
observation, the predicted probabilities are plotted, displayed by coloured dots, where each colour
corresponds to one class.

Arguments

x An object of class cloutput whose slot probmatrix does not contain any
missing value, i.e. probability estimations are provided by the classifier.

main A title for the plot (character).

Value

No return.

Note

The plot usually only makes sense if a sufficiently large numbers of observations has been classified.
This is usually achieved by running the classifier on several learningsets with the method
classification. The output can then be processed via join to obtain an object of class
cloutput to which this method can be applied.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

References

Slawski, M. Daumer, M. Boulesteix, A.-L. (2008) CMA - A comprehensive Bioconductor package
for supervised classification with high dimensional data. BMC Bioinformatics 9: 439

See Also

cloutput
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Barplot Barplot of variable importance

Description

This method can be seen as a visual pendant to toplist. The plot visualizes variable importance
by a barplot. The height of the barplots correspond to variable importance. What variable impor-
tance exactly means depends on the method chosen when calling GeneSelection, s. genesel.

Arguments

x An object of class genesel

top Number of top genes whose variable importance should be displayed. Defaults
to 10.

iter Iteration number (learningset) for which variable importance should be
displayed.

... Further graphical options passed to barplot.

Value

No return.

Note

Note the following

• If scheme = "multiclass", only one plot will be made. Otherwise, one plot will be
made for each binary scenario (depending on whether "scheme" is "one-vs-all" or
"pairwise").

• Variable importance do not make sense for variable selection (ranking) methods that are es-
sentially discrete, such as the Wilcoxon-Rank sum statistic or the Kruskal-Wallis statistic.

• For the methods "lasso", "elasticnet", "boosting" the number of nonzero co-
efficients can be very small, resulting in bars of height zero if top has been chosen too large.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

References

Slawski, M. Daumer, M. Boulesteix, A.-L. (2008) CMA - A comprehensive Bioconductor package
for supervised classification with high dimensional data. BMC Bioinformatics 9: 439

See Also

genesel, GeneSelection, toplist
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plot tuningresult Visualize results of tuning

Description

After hyperparameter tuning using tune it is useful to see which choice of hyperparameters is
suitable and how good the performance is.

Arguments

x An object of class tuningresult.

iter Iteration number (learningset) for which tuning results should be displayed.

which Character vector (maximum length is two) naming the arguments for which tun-
ing results should be display. Default is NULL; if the number of tuned hyperpa-
rameter is less or equal than two, then the results for these hyperparameters will
be plotted. If this number is two, then a contour plot will be made, otherwise
a simple line segment plot. If the number of tuned hyperparameters exceeds
two, then which may not be NULL.

... Further graphical options passed either to plot or contour.

Value

no return.

Note

Frequently, several hyperparameter (combinations) perform "best", s. also the remark in best.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

References

Slawski, M. Daumer, M. Boulesteix, A.-L. (2008) CMA - A comprehensive Bioconductor package
for supervised classification with high dimensional data. BMC Bioinformatics 9: 439

See Also

tune, tuningresult
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plrCMA-methods L2 penalized logistic regression

Description

High dimensional logistic regression combined with an L2-type (Ridge-)penalty. Multiclass case is
also possible.

Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For further argument and output information, consult plrCMA.

plrCMA L2 penalized logistic regression

Description

High dimensional logistic regression combined with an L2-type (Ridge-)penalty. Multiclass case is
also possible. For S4 method information, see plrCMA-methods

Usage

plrCMA(X, y, f, learnind, lambda = 0.01, scale = TRUE, models=FALSE,...)

Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

WARNING: The class labels will be re-coded to range from 0 to K-1, where K
is the total number of different classes in the learning set.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.
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learnind An index vector specifying the observations that belong to the learning set. May
be missing; in that case, the learning set consists of all observations and pre-
dictions are made on the learning set.

lambda Parameter governing the amount of penalization. This hyperparameter should
be tuned.

scale Scale the predictors as specified by X to have unit variance and zero mean.

models a logical value indicating whether the model object shall be returned

... Currently unused argument.

Value

An object of class cloutput.

Author(s)

Special thanks go to

Ji Zhu (University of Ann Arbor, Michigan)

Trevor Hastie (Stanford University)

who provided the basic code that was then adapted by

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>.

References

Zhu, J., Hastie, T. (2004). Classification of gene microarrays by penalized logistic regression.

Biostatistics 5:427-443.

See Also

compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA, gbmCMA, knnCMA,
ldaCMA, LassoCMA, nnetCMA, pknnCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA, pnnCMA,
qdaCMA, rfCMA, scdaCMA, shrinkldaCMA, svmCMA

Examples

### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression from first 10 genes
golubX <- as.matrix(golub[,-1])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run penalized logistic regression (no tuning)
plrresult <- plrCMA(X=golubX, y=golubY, learnind=learnind)
### show results
show(plrresult)
ftable(plrresult)
plot(plrresult)
### multiclass example:
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### load Khan data
data(khan)
### extract class labels
khanY <- khan[,1]
### extract gene expression from first 10 genes
khanX <- as.matrix(khan[,-1])
### select learningset
set.seed(111)
learnind <- sample(length(khanY), size=floor(ratio*length(khanY)))
### run penalized logistic regression (no tuning)
plrresult <- plrCMA(X=khanX, y=khanY, learnind=learnind)
### show results
show(plrresult)
ftable(plrresult)
plot(plrresult)

pls_ldaCMA-methods Partial Least Squares combined with Linear Discriminant Analysis

Description

-This method constructs a classifier that extracts Partial Least Squares components that are plugged
into Linear Discriminant Analysis. The Partial Least Squares components are computed by the
package plsgenomics.

Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For further argument and output information, consult pls_ldaCMA.

pls_ldaCMA Partial Least Squares combined with Linear Discriminant Analysis

Description

This method constructs a classifier that extracts Partial Least Squares components that are plugged
into Linear Discriminant Analysis. The Partial Least Squares components are computed by the
package plsgenomics.

For S4 method information, see pls_ldaCMA-methods.

Usage

pls_ldaCMA(X, y, f, learnind, comp = 2, plot = FALSE,models=FALSE)
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Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

WARNING: The class labels will be re-coded to range from 0 to K-1, where K
is the total number of different classes in the learning set.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.

learnind An index vector specifying the observations that belong to the learning set. May
be missing; in that case, the learning set consists of all observations and pre-
dictions are made on the learning set.

comp Number of Partial Least Squares components to extract. Default is 2 which can
be suboptimal, depending on the particular dataset. Can be optimized using
tune.

plot If comp <= 2, should the classification space of the Partial Least Squares com-
ponents be plotted ? Default is FALSE.

models a logical value indicating whether the model object shall be returned

Value

An object of class cloutput.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

References

Nguyen, D., Rocke, D. M., (2002).

Tumor classifcation by partial least squares using microarray gene expression data.

Bioinformatics 18, 39-50

Boulesteix, A.L., Strimmer, K. (2007).

Partial least squares: a versatile tool for the analysis of high-dimensional genomic data.

Briefings in Bioinformatics 7:32-44.

See Also

compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA, gbmCMA, knnCMA,
ldaCMA, LassoCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA,
pnnCMA, qdaCMA, rfCMA, scdaCMA, shrinkldaCMA, svmCMA
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Examples

### load Khan data
data(khan)
### extract class labels
khanY <- khan[,1]
### extract gene expression
khanX <- as.matrix(khan[,-1])
### select learningset
set.seed(111)
learnind <- sample(length(khanY), size=floor(2/3*length(khanY)))
### run Shrunken Centroids classfier, without tuning
plsresult <- pls_ldaCMA(X=khanX, y=khanY, learnind=learnind, comp = 4)
### show results
show(plsresult)
ftable(plsresult)
plot(plsresult)

pls_lrCMA-methods Partial Least Squares followed by logistic regression

Description

This method constructs a classifier that extracts Partial Least Squares components that form the
the covariates in a binary logistic regression model. The Partial Least Squares components are
computed by the package plsgenomics.

Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For further argument and output information, consult pls_lrCMA

pls_lrCMA Partial Least Squares followed by logistic regression

Description

This method constructs a classifier that extracts Partial Least Squares components that form the
the covariates in a binary logistic regression model. The Partial Least Squares components are
computed by the package plsgenomics.

For S4 method information, see pls_lrCMA-methods.

Usage

pls_lrCMA(X, y, f, learnind, comp = 2, lambda = 1e-4, plot = FALSE,models=FALSE)
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Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

WARNING: The class labels will be re-coded to range from 0 to K-1, where K
is the total number of different classes in the learning set.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.

learnind An index vector specifying the observations that belong to the learning set. May
be missing; in that case, the learning set consists of all observations and pre-
dictions are made on the learning set.

comp Number of Partial Least Squares components to extract. Default is 2 which can
be suboptimal, depending on the particular dataset. Can be optimized using
tune.

lambda Parameter controlling the amount of L2 penalization for logistic regression, usu-
ally taken to be a small value in order to stabilize estimation in the case of sepa-
rable data.

plot If comp <= 2, should the classification space of the Partial Least Squares com-
ponents be plotted ? Default is FALSE.

models a logical value indicating whether the model object shall be returned

Value

An object of class cloutput.

Note

Up to now, only the two-class case is supported.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

References

Boulesteix, A.L., Strimmer, K. (2007).

Partial least squares: a versatile tool for the analysis of high-dimensional genomic data.

Briefings in Bioinformatics 7:32-44.
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See Also

compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA, gbmCMA, knnCMA,
ldaCMA, LassoCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_rfCMA, pnnCMA,
qdaCMA, rfCMA, scdaCMA, shrinkldaCMA, svmCMA

Examples

### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression
golubX <- as.matrix(golub[,-1])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run PLS, combined with logistic regression
result <- pls_lrCMA(X=golubX, y=golubY, learnind=learnind)
### show results
show(result)
ftable(result)
plot(result)

pls_rfCMA-methods Partial Least Squares followed by random forests

Description

This method constructs a classifier that extracts Partial Least Squares components used to generate
Random Forests, s. rfCMA. The Partial Least Squares components are computed by the package
plsgenomics.

Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For further argument and output information, consult pls_rfCMA.
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pls_rfCMA Partial Least Squares followed by random forests

Description

This method constructs a classifier that extracts Partial Least Squares components used to generate
Random Forests, s. rfCMA.

For S4 method information, see pls_rfCMA-methods.

Usage

pls_rfCMA(X, y, f, learnind, comp = 2 * nlevels(as.factor(y)), seed = 111,models=FALSE, ...)

Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

WARNING: The class labels will be re-coded to range from 0 to K-1, where K
is the total number of different classes in the learning set.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.

learnind An index vector specifying the observations that belong to the learning set. May
be missing; in that case, the learning set consists of all observations and pre-
dictions are made on the learning set.

comp Number of Partial Least Squares components to extract. Default ist two times
the number of different classes.

seed Fix Random number generator seed to seed. This is useful to guarantee repro-
ducibility of the results, due to the random component in the random Forest.

models a logical value indicating whether the model object shall be returned

... Further arguments to be passed to randomForests from the package of the
same name.

Value

An object of class cloutput.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>
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References

Boulesteix, A.L., Strimmer, K. (2007).

Partial least squares: a versatile tool for the analysis of high-dimensional genomic data.

Briefings in Bioinformatics 7:32-44.

See Also

compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA, gbmCMA, knnCMA,
ldaCMA, LassoCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pnnCMA,
qdaCMA, rfCMA, scdaCMA, shrinkldaCMA, svmCMA

Examples

### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression
golubX <- as.matrix(golub[,-1])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run PLS, combined with Random Forest
#result <- pls_rfCMA(X=golubX, y=golubY, learnind=learnind)
### show results
#show(result)
#ftable(result)
#plot(result)

pnnCMA-methods Probabilistic Neural Networks

Description

Probabilistic Neural Networks is the term Specht (1990) used for a Gaussian kernel estimator for
the conditional class densities.

Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For references, further argument and output information, consult pnnCMA.
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pnnCMA Probabilistic Neural Networks

Description

Probabilistic Neural Networks is the term Specht (1990) used for a Gaussian kernel estimator for
the conditional class densities.

For S4 method information, see pnnCMA-methods.

Usage

pnnCMA(X, y, f, learnind, sigma = 1,models=FALSE)

Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

Each variable (gene) will be scaled for unit variance and zero mean.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

WARNING: The class labels will be re-coded to range from 0 to K-1, where K
is the total number of different classes in the learning set.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.

learnind An index vector specifying the observations that belong to the learning set. For
this method, this must not be missing.

sigma Standard deviation of the Gaussian Kernel used.
This hyperparameter should be tuned, s. tune. The default is 1, but this gener-
ally does not lead to good results. Actually, this method reacts very sensitively
to the value of sigma. Take care if warnings appear related to the particular
choice.

models a logical value indicating whether the model object shall be returned

Value

An object of class cloutput.

Note

There is actually no strong relation of this method to Feed-Forward Neural Networks, s. nnetCMA.
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Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

References

Specht, D.F. (1990).

Probabilistic Neural Networks. Neural Networks, 3, 109-118.

See Also

compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA, gbmCMA, knnCMA,
ldaCMA, LassoCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA,
qdaCMA, rfCMA, scdaCMA, shrinkldaCMA, svmCMA

Examples

### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression from first 10 genes
golubX <- as.matrix(golub[,2:11])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run PNN
pnnresult <- pnnCMA(X=golubX, y=golubY, learnind=learnind, sigma = 3)
### show results
show(pnnresult)
ftable(pnnresult)
plot(pnnresult)

prediction-methods General method for predicting class lables of new observations

Description

Perform prediction signatures:

Methods

X.tr = "matrix", X.new="matrix", y.tr=’any’,f = "missing" signature 1

X.tr = "data.frame", X.new="data.frame", y.tr = "missing", f = "formula" signature 2

X.tr = "ExpressionSet",X.new = "ExpressionSet", y.tr = "character", f = "missing" signature
3

For further argument and output information, consult classification.
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prediction General method for predicting classes of new observations

Description

This method constructs the given classifier using the specified training data, gene selection and
tuning results.. Subsequently, class labels are predicted for new observations.
For S4 method information, s. classification-methods.

Usage

prediction(X.tr,y.tr,X.new,f,classifier,genesel,models=F,nbgene,tuneres,...)

Arguments

X.tr Training gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

X.new gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

y.tr Class labels of training observation. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

WARNING: The class labels will be re-coded for classifier construction to
range from 0 to K-1, where K is the total number of different classes in the
learning set.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.

genesel Optional (but usually recommended) object of class genesel containing vari-
able importance information for the argument learningsets. In this case
the object contains a single variable selection. Appropriate genesel-objects
can be obtained using the function genesel without learningset and setting
X=X.tr and y=y.tr (i.e. corresponding to the training data of this function).

nbgene Number of best genes to be kept for classification, based on either genesel or
the call to GeneSelection using genesellist. In the case that both are
missing, this argument is not necessary. note:

• If the gene selection method has been one of "lasso", "elasticnet",
"boosting", nbgene will be reset to min(s, nbgene) where s is
the number of nonzero coefficients.
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• if the gene selection scheme has been "one-vs-all", "pairwise"
for the multiclass case, there exist several rankings. The top nbgene will
be kept of each of them, so the number of effective used genes will some-
times be much larger.

classifier Name of function ending with CMA indicating the classifier to be used.

tuneres Analogous to the argument genesel - object of class tuningresult con-
taining information about the best hyperparameter choice for the argument learningsets.
Appropriate tuning-objects can be obtained using the function tune without
learningsets and setting parameters X=X.tr, y=y.tr and genesel=genesel
(i.e. using the same training data and gene selection as in this function)

models a logical value indicating whether the model object shall be returned

... Further arguments passed to the function classifier.

Details

This function builds the specified classifier and predicts the class labels of new observations. Hence,
its usage differs from those of most other prediction functions in R.

Value

A object of class predoutput-class; Predicted classes can be seen by show(predoutput)

Author(s)

Christoph Bernau <bernau@ibe.med.uni-muenchen.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

References

Slawski, M. Daumer, M. Boulesteix, A.-L. (2008) CMA - A comprehensive Bioconductor package
for supervised classification with high dimensional data. BMC Bioinformatics 9: 439

See Also

GeneSelection, tune, evaluation, compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA,
flexdaCMA, gbmCMA, knnCMA, ldaCMA, LassoCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA,
pls_lrCMA, pls_rfCMA, pnnCMA, qdaCMA, rfCMA, scdaCMA, shrinkldaCMA, svmCMAclassification

Examples

### a simple k-nearest neighbour example
### datasets
## Not run: plot(x)
data(golub)
golubY <- golub[,1]
golubX <- as.matrix(golub[,-1])
###Splitting data into training and test set
X.tr<-golubX[1:30]
X.new<-golubX[31:39]
y.tr<-golubY[1:30]
### 1. GeneSelection
selttest <- GeneSelection(X=X.tr, y=y.tr, method = "t.test")
### 2. tuning
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tunek <- tune(X.tr, y.tr, genesel = selttest, nbgene = 20, classifier = knnCMA)
### 3. classification
pred <- prediction(X.tr=X.tr,y.tr=y.tr,X.new=X.new, genesel = selttest,

tuneres = tunek, nbgene = 20, classifier = knnCMA)
### show and analyze results:
show(pred)

## End(Not run)

predoutput-class "predoutput"

Description

Object returned by the function prediction

Slots

Xnew: Gene Expression matrix of new observations

yhat: Predicted class labels for the new data.

model: List containing the constructed classifier.

Methods

show Returns predicted class labels for the new data.

Author(s)

Christoph Bernau <bernau@ibe.med.uni-muenchen.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

See Also

compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA, gbmCMA, knnCMA,
ldaCMA, LassoCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA,
pnnCMA, qdaCMA, rfCMA, scdaCMA, shrinkldaCMA, svmCMA

qdaCMA-methods Quadratic Discriminant Analysis

Description

Performs a quadratic discriminant analysis under the assumption of a multivariate normal distribu-
tion in each classes without restriction concerning the covariance matrices. The function qda from
the package MASS is called for computation.
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Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For further argument and output information, consult qdaCMA.

qdaCMA Quadratic Discriminant Analysis

Description

Performs a quadratic discriminant analysis under the assumption of a multivariate normal distribu-
tion in each classes without restriction concerning the covariance matrices. The function qda from
the package MASS is called for computation.

For S4 method information, see qdaCMA-methods.

Usage

qdaCMA(X, y, f, learnind,models=FALSE, ...)

Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

WARNING: The class labels will be re-coded to range from 0 to K-1, where K
is the total number of different classes in the learning set.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.

learnind An index vector specifying the observations that belong to the learning set. May
be missing; in that case, the learning set consists of all observations and pre-
dictions are made on the learning set.

models a logical value indicating whether the model object shall be returned

... Further arguments to be passed to qda from the package MASS

Value

An object of class cloutput.
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Note

Excessive variable selection has usually to performed before qdaCMA can be applied in the p > n
setting. Not reducing the number of variables can result in an error message.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

References

McLachlan, G.J. (1992).

Discriminant Analysis and Statistical Pattern Recognition.

Wiley, New York

See Also

compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA, gbmCMA, knnCMA,
ldaCMA, LassoCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA,
pnnCMA, rfCMA, scdaCMA, shrinkldaCMA, svmCMA

Examples

### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression from first 3 genes
golubX <- as.matrix(golub[,2:4])
### select learningset
ratio <- 2/3
set.seed(112)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run QDA
qdaresult <- qdaCMA(X=golubX, y=golubY, learnind=learnind)
### show results
show(qdaresult)
ftable(qdaresult)
plot(qdaresult)
### multiclass example:
### load Khan data
data(khan)
### extract class labels
khanY <- khan[,1]
### extract gene expression from first 4 genes
khanX <- as.matrix(khan[,2:5])
### select learningset
set.seed(111)
learnind <- sample(length(khanY), size=floor(ratio*length(khanY)))
### run QDA
qdaresult <- qdaCMA(X=khanX, y=khanY, learnind=learnind)
### show results
show(qdaresult)
ftable(qdaresult)
plot(qdaresult)
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rfCMA-methods Classification based on Random Forests

Description

Random Forests were proposed by Breiman (2001) and are implemented in the package randomForest.

In this package, they can as well be used to rank variables according to their importance, s. GeneSelection.

Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For references, further argument and output information, consult rfCMA

rfCMA Classification based on Random Forests

Description

Random Forests were proposed by Breiman (2001) and are implemented in the package randomForest.

In this package, they can as well be used to rank variables according to their importance, s. GeneSelection.

For S4 method information, see rfCMA-methods

Usage

rfCMA(X, y, f, learnind, varimp = TRUE, seed = 111, models=FALSE, ...)

Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

WARNING: The class labels will be re-coded to range from 0 to K-1, where K
is the total number of different classes in the learning set.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.
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learnind An index vector specifying the observations that belong to the learning set. May
be missing; in that case, the learning set consists of all observations and pre-
dictions are made on the learning set.

varimp Should variable importance measures be computed ? Defauls to TRUE.

seed Fix Random number generator seed to seed. This is useful to guarantee repro-
ducibility of the results.

models a logical value indicating whether the model object shall be returned

... Further arguments to be passed to randomForest from the package of the
same name.

Value

If varimp, then an object of class clvarseloutput is returned, otherwise an object of class
cloutput

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

References

Breiman, L. (2001)

Random Forest.

Machine Learning, 45:5-32.

See Also

compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA, gbmCMA, knnCMA,
ldaCMA, LassoCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA,
pnnCMA, qdaCMA, scdaCMA, shrinkldaCMA, svmCMA

Examples

### load Khan data
data(khan)
### extract class labels
khanY <- khan[,1]
### extract gene expression
khanX <- as.matrix(khan[,-1])
### select learningset
set.seed(111)
learnind <- sample(length(khanY), size=floor(2/3*length(khanY)))
### run random Forest
#rfresult <- rfCMA(X=khanX, y=khanY, learnind=learnind, varimp = FALSE)
### show results
#show(rfresult)
#ftable(rfresult)
#plot(rfresult)
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roc Receiver Operator Characteristic

Description

The empirical Receiver Operator Characteristic (ROC) is widely used for the evaluation of diagnos-
tic tests, but also for the evaluation of classfiers. In this implementation, it can only be used for the
binary classification case. The input are a numeric vector of class probabilities (which play the role
of a test result) and the true class labels. Note that misclassifcation performance can (partly widely)
differ from the Area under the ROC (AUC). This is due to the fact that misclassifcation rates are
always computed for the threshold ’probability = 0.5’.

Arguments

object An object of cloutput.

plot Should the ROC curve be plotted ? Default is TRUE.

... Argument to specifiy further graphical options.

Value

The empirical area under the curve (AUC).

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

References

Slawski, M. Daumer, M. Boulesteix, A.-L. (2008) CMA - A comprehensive Bioconductor package
for supervised classification with high dimensional data. BMC Bioinformatics 9: 439

See Also

evaluation

scdaCMA-methods Shrunken Centroids Discriminant Analysis

Description

The nearest shrunken centroid classification algorithm is detailly described in Tibshirani et al.
(2002).

It is widely known under the name PAM (prediction analysis for microarrays), which can also be
found in the package pamr.
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Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For references, further argument and output information, consult scdaCMA.

scdaCMA Shrunken Centroids Discriminant Analysis

Description

The nearest shrunken centroid classification algorithm is detailly described in Tibshirani et al.
(2002).

It is widely known under the name PAM (prediction analysis for microarrays), which can also be
found in the package pamr.

For S4 method information, see scdaCMA-methods.

Usage

scdaCMA(X, y, f, learnind, delta = 0.5, models=FALSE,...)

Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

WARNING: The class labels will be re-coded to range from 0 to K-1, where K
is the total number of different classes in the learning set.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.

learnind An index vector specifying the observations that belong to the learning set. May
be missing; in that case, the learning set consists of all observations and pre-
dictions are made on the learning set.

delta The shrinkage intensity for the class centroids - a hyperparameter that must be
tuned. The default 0.5 not necessarily produces good results.

models a logical value indicating whether the model object shall be returned

... Currently unused argument.
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Value

An object of class cloutput.

Note

The results can differ from those obtained by using the package pamr.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

References

Tibshirani, R., Hastie, T., Narasimhan, B., and Chu, G., (2003).

Class prediction by nearest shrunken centroids with applications to DNA microarrays.

Statistical Science, 18, 104-117

See Also

compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA, gbmCMA, knnCMA,
ldaCMA, LassoCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA,
pnnCMA, qdaCMA, rfCMA, shrinkldaCMA, svmCMA

Examples

### load Khan data
data(khan)
### extract class labels
khanY <- khan[,1]
### extract gene expression
khanX <- as.matrix(khan[,-1])
### select learningset
set.seed(111)
learnind <- sample(length(khanY), size=floor(2/3*length(khanY)))
### run Shrunken Centroids classfier, without tuning
scdaresult <- scdaCMA(X=khanX, y=khanY, learnind=learnind)
### show results
show(scdaresult)
ftable(scdaresult)
plot(scdaresult)

shrinkldaCMA-methods
Shrinkage linear discriminant analysis

Description

Linear Discriminant Analysis combined with the James-Stein-Shrinkage approach of Schaefer and
Strimmer (2005) for the covariance matrix.

Currently still an experimental version. For S4 method information, see shrinkldaCMA-methods
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Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For further argument and output information, consult shrinkldaCMA.

shrinkldaCMA Shrinkage linear discriminant analysis

Description

Linear Discriminant Analysis combined with the James-Stein-Shrinkage approach of Schaefer and
Strimmer (2005) for the covariance matrix.

Currently still an experimental version.

For S4 method information, see shrinkldaCMA-methods

Usage

shrinkldaCMA(X, y, f, learnind, models=FALSE, ...)

Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

WARNING: The class labels will be re-coded to range from 0 to K-1, where K
is the total number of different classes in the learning set.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.

learnind An index vector specifying the observations that belong to the learning set. May
be missing; in that case, the learning set consists of all observations and pre-
dictions are made on the learning set.

models a logical value indicating whether the model object shall be returned

... Further arguments to be passed to cov.shrink from the package corpcor

Value

An object of class cloutput.
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Note

This is still an experimental version.

Covariance shrinkage is performed by calling functions from the package corpcor.

Variable selection is not necessary.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

References

Schaefer, J., Strimmer, K. (2005).

A shrinkage approach to large-scale covariance estimation and implications for functional ge-
nomics.

Statististical Applications in Genetics and Molecular Biology, 4:32.

See Also

compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA, gbmCMA, knnCMA,
ldaCMA, LassoCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA,
pnnCMA, qdaCMA, rfCMA, scdaCMA, svmCMA.

Examples

### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression
golubX <- as.matrix(golub[,-1])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run shrinkage-LDA
result <- shrinkldaCMA(X=golubX, y=golubY, learnind=learnind)
### show results
show(result)
ftable(result)
plot(result)

summary Summarize classifier evaluation

Description

This method principally does nothing more than applying the pre-implemented summary() func-
tion to the slot score of an object of class evaloutput. One then obtains the usual five-point-
summary, consisting of minimum and maximum, lower and upper quartile and the median. Addi-
tionally, the mean is also shown.
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Arguments

object An object of class evaloutput.

... Further arguments passed to the pre-implemented summary function.

Value

No return.

Note

That the results normally differ for different evaluation schemes ("iterationwise" or "observation-
wise").

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

See Also

evaluation, compare, obsinfo.

svmCMA-methods Support Vector Machine

Description

Calls the function svm from the package e1071 that provides an interface to the award-winning
LIBSVM routines.

Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For further argument and output information, consult svmCMA.
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svmCMA Support Vector Machine

Description

Calls the function svm from the package e1071 that provides an interface to the award-winning
LIBSVM routines. For S4 method information, see svmCMA-methods

Usage

svmCMA(X, y, f, learnind, probability, models=FALSE,...)

Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

WARNING: The class labels will be re-coded to range from 0 to K-1, where K
is the total number of different classes in the learning set.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.

learnind An index vector specifying the observations that belong to the learning set. May
be missing; in that case, the learning set consists of all observations and pre-
dictions are made on the learning set.

probability logical indicating whether the model should allow for probability predictions.

models a logical value indicating whether the model object shall be returned

... Further arguments to be passed to svm from the package e1071

Value

An object of class cloutput.

Note

Contrary to the default settings in e1071:::svm, the used kernel is a linear kernel which has
turned to be out a better default setting in the small sample, large number of predictors - situation,
because additional nonlinearity is mostly not necessary there. It additionally avoids the tuning of a
further kernel parameter gamma, s. help of the package e1071 for details.
Nevertheless, hyperparameter tuning concerning the parameter cost must usually be performed to
obtain reasonale results, s. tune.
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Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

Christoph Bernau <bernau@ibe.med.uni-muenchen.de>

References

Boser, B., Guyon, I., Vapnik, V. (1992)
A training algorithm for optimal margin classifiers.
Proceedings of the fifth annual workshop on Computational learning theory, pages 144-152, ACM
Press.

Chang, Chih-Chung and Lin, Chih-Jen : LIBSVM: a library for Support Vector Machines http:
//www.csie.ntu.edu.tw/~cjlin/libsvm

Schoelkopf, B., Smola, A.J. (2002)
Learning with kernels. MIT Press, Cambridge, MA.

See Also

compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA, gbmCMA, knnCMA,
ldaCMA, LassoCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA,
pnnCMA, qdaCMA, rfCMA, scdaCMA, shrinkldaCMA

Examples

### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression
golubX <- as.matrix(golub[,-1])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run _untuned_linear SVM
svmresult <- svmCMA(X=golubX, y=golubY, learnind=learnind,probability=TRUE)
### show results
show(svmresult)
ftable(svmresult)
plot(svmresult)

toplist Display ’top’ variables

Description

This is a convenient method to get quick access to the most important variables, based on the result
of call to GeneSelection.

Usage

toplist(object, k = 10, iter = 1, show = TRUE, ...)

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
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Arguments

object An object of genesel.

k Number of top genes for which information should be displayed. Defaults to 10.

iter teration number (learningset) for which tuning results should be displayed.

show Should the results be printed ? Default is TRUE.

... Currently unused argument.

Value

The type of output depends on the gene selection scheme. For the multiclass case, if gene selection
has been run with the "pairwise" or "one-vs-all" scheme, then the output will be a list
of data.frames, each containing the gene indices plus variable importance for the top k genes.
The list elements are named according to the binary scenarios (e.g., 1 vs. 3). Otherwise, a
single data.frame is returned.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

References

Slawski, M. Daumer, M. Boulesteix, A.-L. (2008) CMA - A comprehensive Bioconductor package
for supervised classification with high dimensional data. BMC Bioinformatics 9: 439

See Also

genesel, GeneSelection, plot,genesel-method

tune-methods Hyperparameter tuning for classifiers

Description

Performs hyperparameter tuning for the following signatures:

Methods

X = "matrix", y = "numeric", f = "missing" signature 1

X = "matrix", y = "factor", f = "missing" signature 2

X = "data.frame", y = "missing", f = "formula" signature 3

X = "ExpressionSet", y = "character", f = "missing" signature 4

For further argument and output information, consult tune.
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tune Hyperparameter tuning for classifiers

Description

Most classifiers implemented in this package depend on one or even several hyperparameters (s.
details) that should be optimized to obtain good (and comparable !) results. As tuning scheme, we
propose three fold Cross-Validation on each learningset (for fixed selected variables). Note
that learningsets usually do not contain the complete dataset, so tuning involves a second
level of splitting the dataset. Increasing the number of folds leads to larger datasets (and possibly to
higher accuracy), but also to higher computing times.
For S4 method information, s. link{tune-methods}

Usage

tune(X, y, f, learningsets, genesel, genesellist = list(), nbgene, classifier, fold = 3, strat = FALSE, grids = list(), trace = TRUE, ...)

Arguments

X Gene expression data. Can be one of the following:

• A matrix. Rows correspond to observations, columns to variables.
• A data.frame, when f is not missing (s. below).
• An object of class ExpressionSet.

y Class labels. Can be one of the following:

• A numeric vector.
• A factor.
• A character if X is an ExpressionSet that specifies the phenotype

variable.
• missing, if X is a data.frame and a proper formula f is provided.

f A two-sided formula, if X is a data.frame. The left part correspond to class
labels, the right to variables.

learningsets An object of class learningsets. May be missing, then the complete datasets
is used as learning set.

genesel Optional (but usually recommended) object of class genesel containing vari-
able importance information for the argument learningsets

genesellist In the case that the argument genesel is missing, this is an argument list
passed to GeneSelection. If both genesel and genesellist are miss-
ing, no variable selection is performed.

nbgene Number of best genes to be kept for classification, based on either genesel or
the call to GeneSelection using genesellist. In the case that both are
missing, this argument is not necessary. note:

• If the gene selection method has been one of "lasso", "elasticnet",
"boosting", nbgene will be reset to min(s, nbgene) where s is
the number of nonzero coefficients.

• if the gene selection scheme has been "one-vs-all", "pairwise"
for the multiclass case, there exist several rankings. The top nbgene will
be kept of each of them, so the number of effective used genes will some-
times be much larger.
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classifier Name of function ending with CMA indicating the classifier to be used.

fold The number of cross-validation folds used within each learningset. Default
is 3. Increasing fold will lead to higher computing times.

strat Should stratified cross-validation according to the class proportions in the com-
plete dataset be used ? Default is FALSE.

grids A named list. The names correspond to the arguments to be tuned, e.g. k (the
number of nearest neighbours) for knnCMA, or cost for svmCMA. Each ele-
ment is a numeric vector defining the grid of candidate values. Of course,
several hyperparameters can be tuned simultaneously (though requiring much
time). By default, grids is an empty list. In that case, a pre-defined list will be
used, s. details.

trace Should progress be traced ? Default is TRUE.

... Further arguments to be passed to classifier, of course not one of the argu-
ments to be tuned (!).

Details

The following default settings are used, if the arguments grids is an empty list:

gbmCMA n.trees = c(50, 100, 200, 500, 1000)

compBoostCMA mstop = c(50, 100, 200, 500, 1000)

LassoCMA norm.fraction = seq(from=0.1, to=0.9, length=9)

ElasticNetCMA norm.fraction = seq(from=0.1, to=0.9, length=5), lambda2
= 2^{-(5:1)}

plrCMA lambda = 2^{-4:4}

pls_ldaCMA comp = 1:10

pls_lrCMA comp = 1:10

pls_rfCMA comp = 1:10

rfCMA mtry = ceiling(c(0.1, 0.25, 0.5, 1, 2)*sqrt(ncol(X))), nodesize
= c(1,2,3)

knnCMA k=1:10

pknnCMA k = 1:10

scdaCMA delta = c(0.1, 0.25, 0.5, 1, 2, 5)

pnnCMA sigma = c(2^{-2:2}),

nnetCMA size = 1:5, decay = c(0, 2^{-(4:1)})

svmCMA, kernel = "linear" cost = c(0.1, 1, 5, 10, 50, 100, 500)

svmCMA, kernel = "radial" cost = c(0.1, 1, 5, 10, 50, 100, 500), gamma
= 2^{-2:2}

svmCMA, kernel = "polynomial" cost = c(0.1, 1, 5, 10, 50, 100, 500),
degree = 2:4

Value

An object of class tuningresult
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Note

The computation time can be enormously high. Note that for each different learningset, the
classifier must be trained fold times number of possible different hyperparameter
combinations times. E.g. if the number of the learningsets is fifty, fold = 3 and two hyper-
parameters (each with 5 candidate values) are tuned, 50x3x25=3750 training iterations are necessary
!

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

Christoph Bernau <bernau@ibe.med.uni-muenchen.de>

References

Slawski, M. Daumer, M. Boulesteix, A.-L. (2008) CMA - A comprehensive Bioconductor package
for supervised classification with high dimensional data. BMC Bioinformatics 9: 439

See Also

tuningresult, GeneSelection, classification

Examples

## Not run:
### simple example for a one-dimensional grid, using compBoostCMA.
### dataset
data(golub)
golubY <- golub[,1]
golubX <- as.matrix(golub[,-1])
### learningsets
set.seed(111)
lset <- GenerateLearningsets(y=golubY, method = "CV", fold=5, strat =TRUE)
### tuning after gene selection with the t.test
tuneres <- tune(X = golubX, y = golubY, learningsets = lset,

genesellist = list(method = "t.test"),
classifier=compBoostCMA, nbgene = 100,
grids = list(mstop = c(50, 100, 250, 500, 1000)))

### inspect results
show(tuneres)
best(tuneres)
plot(tuneres, iter = 3)

## End(Not run)

tuningresult-class "tuningresult"

Description

Object returned by the function tune
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Slots

hypergrid: A data.frame representing the grid of values that were tried and evaluated. The
number of columns equals the number of tuned hyperparameters and the number rows equals
the number of all possible combinations of the discrete grids.

tuneres: A list whose lengths equals the number of different learningsets for which tuning
has been performed and whose elements are numeric vectors with length equal to the num-
ber of rows of hypergrid (s.above), containing the misclassifcation rate belonging to the
respective hyperparameter/hyperparameter combination. In order to to get an overview about
the best hyperparmeter/hyperparameter combination, use the convenience method best

method: Name of the classifier that has been tuned.

fold: Number of cross-validation fold used for tuning, s. argument of the same name in tune

Methods

show Use show(tuninresult-object) for brief information.

best Use best(tuningresult-object) to see which hyperparameter/hyperparameter com-
bination has performed best in terms of the misclassification rate, s. best,tuningresult-
method

plot Use plot(tuningresult-object, iter, which) to display the performance of
hyperparameter/hyperparameter combinations graphically, either as one-dimensional or as
two-dimensional (contour) plot, s. plot,tuningresult-method

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>

See Also

tune

varseloutput-class "varseloutput"

Description

An object returned by the functions described in filter, usually not created directly by the user.

Slots

varsel: numeric vector of variable importance measures, e.g. absolute of genewise statistics.

Methods

No methods are currently defined.

Author(s)

Martin Slawski <ms@cs.uni-sb.de>

Anne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>
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See Also

filter, clvarseloutput
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