ADaCGH?2

April 20, 2011

inputDataToADaCGHData
Convert CGH data to ff data frames

Description

An input data frame with CGH data is converted to several ff files and data checked for potential
errors and location duplications.

Usage
inputDataToADaCGHData (ffpattern = paste(getwd(), "/", sep = ""),

MAList = NULL,
cloneinfo = NULL,
filename = NULL,
sep = n \t " ,
quote - n \ wn ,
na.omit = FALSE,
minNumPerChrom = 10)

Arguments

ffpattern See argument pattern in ££. The default is to create the "ff" files in the
current working directory.

MAList The name of an object of class MAList (as.MAList) or SegList (e.g.,
dim.SegList). See vignnettes for these packages for details about these ob-
jects.

cloneinfo A character vector with the full path to a file that conforms to the characteristis
of file in function read.clonesinfo (see details in the vignette) or the
name of a data frame with at least a column named "Chr" (with chromosomal
informtaion) and "Position".

filename Name of data RData file that contains the data frame with original, non-ff, data.

Note: this is the name of the RData file (possibly including path), NOT the name
of the data frame.

The first three columns of the data frame are the IDs of the probes, the chro-
mosome number, and the position, and all remaining columns contain the data

inputDataToADaCGHData

for the arrays, one column per array. The names of the first three column do
not matter, but the order does. Names of the remaining columns will be used if
existing; otherwise, fake array names will be created.

sep Argument to read.table if reading a cloneinfo file.

quote Argument to read.table if reading a cloneinfo file.

na.omit Omit NAs? If there are NAs and na.omit is set to FALSE, the function will stop
with an error.

minNumPerChrom
If any chromosome has fewer observations than minNumPerChrom the function
will fail. This can help detect upstream pre-processing errors.

Details

If there are identical positions (in the same chromosome) a small random uniform variate is added
to get unique locations.

Commented examples of reading objects from limma and snapCGH are provided in the vignnette.

Value

This function is used mainly for its side effects: writing several ff files to the current working
directory (the actual names are printed out).

In addition, and since we need to manipulate the complete set of original data, the return value is a
data frame that is could be used later to speed up certain calculations. Right now, however, this is
not used for anything, except for information purposes. This table is similar to a dictionary or hash
table. This data frame has (number of arrays * number of chromosomes) rows. The columns are

Index
ArrayNum
Arrayname
ChromNum

ChromName

posInit

posEnd

Note

The integer index of the entry, 1:number of arrays * number of chromosomes
The array number

The name of the array

The chrosome number

The chromosome name. Yes, chromosome must be numeric, but the values
of ChromNum form a set of integers starting at one and going up to the total
number of different chromosomes. E.g., if you only have two chromosomes, say
3 and 22, ChromNum contains values 1 and 2, whereas ChromName contains
values 3 and 22.

The first position (in a vector ordered from 1 to total number of probes, with
probes ordered by chromosome and position within chromosome) of a probe of
this chromosome.

The last position of a probe of this chromosome.

Converting a very large data set into a set of ff files can be memory consuming. Since this function
is mainly used for its side effects (leaving the ff files in the disk), it can be run in a separate process
that will then be killed. See an example below using multicore. (For the example you must install

multicore).

Author(s)

Ramon Diaz-Uriarte <rdiaz02@gmail.com>

inputEx|1
Examples

fname <- list.files(path = system.file("data", package = "ADaCGH2"),
full.names = TRUE, pattern = "inputEx1l")
tableChromArray <- inputDataToADaCGHData (filename = fname)

Clean up (DO NOT do this with objects you want to keep!!!)
load ("chromData.RData")

load ("posData.RData")

load ("cghData.RData")

delete (cghData); rm(cghData)
delete (posData); rm(posData)
delete (chromData); rm(chromData)
unlink ("chrombata.RData")
(
(
(

unlink ("posData.RData")
unlink ("cghData.RData")
unlink ("probeNames.RData")

Running in a separate process
This example only does anything if you have multicore installed.
if (require (multicore)) {
parallel (inputDataToADaCGHData (filename = fname), silent = FALSE)
tableChromArray <- collect () [[1]]
if (inherits (tableChromArray, "try-error")) {
stop ("ERROR in input data conversion")
}
Clean up (DO NOT do this with objects you want to keep!!!)
load ("chrombData.RData")
load ("posData.RData")
load ("cghData.RData")

delete (cghData); rm(cghData)
delete (posData); rm(posData)
delete (chromData); rm(chromData)
unlink ("chromData.RData")
(
(
(

unlink ("posData.RData")
unlink ("cghData.RData")
unlink ("probeNames.RData")

}
Try to prevent problems in R CMD check
Sys.sleep(2)

inputEx1 A fictitious aCGH data set

Description

A fictitious aCGH data set.

4 outputToCGHregions

Usage

inputExl

Format
A data frame with 4323 rows and 6 columns; the last three correspond to the aCGH data for three
samples.

Source

Simulated data

inputEx2 A fictitious aCGH data set

Description

A fictitious aCGH data set.

Usage

inputEx2

Format
A data frame with 452 rows and 6 columns; the last three correspond to the aCGH data for three
samples.

Source

Simulated data

outputToCGHregions ADaCGH?2 output as input to CGHregions

Description

Convert ADaCGH2 output to a data frame that can be used as input for CGHregions.

Usage

outputToCGHregions (output, directory = getwd())

Arguments
output The name of the output from a call to a pSegment function.
directory The directory where the initial data transformation and the analysis have been

carried out. It is a lot better if you just work on a single directory for a set of
files. Otherwise, unless you keep very carefull track of where you do what, you
will run into trouble.

outputToCGHregions 5

Value

A data frame of 4 + k columns that can be used as input to the CGHregions function. The first four
columns are the probe name, the chromosome, the position and the position. The last k columns are
the calls for the k samples.

Note
This function does NOT check if the calls are meaningfull. In particular, you probably do NOT
want to use this function when pSegment has been called using ‘merging = "none"’.
Author(s)

Ramon Diaz-Uriarte <rdiaz02@gmail.com>

See Also

pSegment

Examples

snowfallInit (universeSize = 2, typecluster = "SOCK")

To speed up R CMD check, we do not use inputExl, but a much smaller
data set. When you try the examples, you might one to use
inputEx1l instead.

Not run:

fname <- list.files(path = system.file("data", package = "ADaCGH2"),
full.names = TRUE, pattern = "inputEx1l")

End (Not run)

fname <- list.files(path = system.file("data", package = "ADaCGH2"),
full.names = TRUE, pattern = "inputEx2")

tableChromArray <- inputDataToADaCGHData (filename = fname)

hs_mad.out <- pSegmentHaarSeg("cghData.RData",
"chromData.RData", merging = "MAD")

forcghr <- outputToCGHregions (hs_mad.out)
if (require (CGHregions)) {
regionsl <- CGHregions (forcghr)
regionsl

Explicitly stop cluster
sfStop ()

Clean up (DO NOT do this with objects you want to keep!!!)
load ("chromData.RData")

load ("posData.RData")

load ("cghData.RData")

6 pChromPlot

delete (cghData); rm(cghData)
delete (posData); rm(posData)
delete (chromData); rm(chromData)
unlink ("chrombata.RData")
(
(
(

unlink ("posData.RData")
unlink ("cghData.RData")
unlink ("probeNames.RData")

lapply (hs_mad.out, delete)
rm (hs_mad.out)

Try to prevent problems in R CMD check
Sys.sleep(2)

pChromPlot Segment plots for aCGH as PNG

Description

Produce PNG figures of egment plots (by chromosome) for aCGH segmentation results. Internal
calls are parallelized for increased speed and we use ff objets to allow the handling of very large
objects. The output can include files for creating HTML with imagemaps.

Usage

pChromPlot (outRDataName, cghRDataName, chromRDataName,
probenamesRDataName,
posRDataName = NULL,
imgheight = 500,
pixels.point = 3,
pch = 20,
colors = c("orange", "red", "green", "blue", "black"),
imagemap = FALSE,
-)

Arguments

outRDataName The Rdata file name that contains the £ £df with the results from the segmenta-
tion as carried out by any of the pSegment functions.

cghRDataName The Rdata file name that contains the £ £d £ with the aCGH data. This file can be
created using as . £ £df with a data frame with genes (probes) in rows and sub-
jects or arrays in columns. Function inputDataToADaCGHData produces
these type of files.

chromRDataName
The RData file name with the ff (short integer) vector with the chromosome
indicator. Function inputDataToADaCGHData produces these type of files.

probenamesRDataName

The RData file name with the vector with the probe names. Function inputDataToADaCGHData
produces these type of files. Note that this is not an ff file.

pChromPlot 7

posRDataName The RData file name with the ff double vector with the location (e.g., position in

kbases) of each probe in the chromosome. Function inputDataToADaCGHData

produces these type of files. Used for the spacing in the plots. If NULL, the x-
axis goes from 1:number of probes in that chromosome.

imgheight Height of png image. See png.

pixels.point Approximate number of pixels that each point takes; this determines also final

figure size. With many probes per chromosome, you will want to make this a
small value.

pch The type of plotting symbol. See par.

colors A five-element character vector with the colors for: probes without change,

probes that have a "gained" status, probes that have a "lost" status, the line that
connects (smoothed values of) probes, the horizontal line at the O level.

imagemap If FALSE only the png figure is produced. If TRUE, for each array * chromo-

Value

some, to additional files are produced: "pngCoord_ChiNN@MM" and "gene-
Names_ChrNN@MM", where "NN" is the chromosome number and "MM" is
the array name. The first file contains the coordinates of the png and radius and
the second the gene or probe names, so that you can easily produce an HTML
imagemap. (Former versions of ADaCGH did this automatically with Python.
In this version we include the Python files under "imagemap-example".)

Additional arguments; not used.

Used only for its side effects of producing PNG plots, stored in the current working directory
(getwd().)

Author(s)

Ramon Diaz-Uriarte <rdiaz02@gmail.com>

See Also

pSegment

Examples

##

Create a temp dir for storing output

dir.create ("ADaCGH2_plot_tmp_dir")
originalDir <- getwd()
setwd ("ADaCGH2_plot_tmp_dir")

Start cluster

snowfallInit (universeSize = 2, typecluster = "SOCK")

To speed up R CMD check, we do not use inputExl, but a much smaller
data set. When you try the examples, you might one to use

inputExl instead.

Not run:

fname <- list.files(path = system.file("data", package = "ADaCGH2"),

full.names = TRUE, pattern = "inputEx1l")

pChromPlot

End (Not run)

fname <- list.files(path = system.file("data", package = "ADaCGH2"),
full.names = TRUE, pattern = "inputEx2")

tableChromArray <- inputDataToADaCGHData (filename = fname)

hs_mad.out <- pSegmentHaarSeg("cghData.RData",

"chromData.RData", merging = "MAD")
save (hs_mad.out, file = "hs_mad.out.RData", compress = FALSE)
pChromPlot (outRDataName = "hs_mad.out.RData",
cghRDataName = "cghData.RData",
chromRDataName = "chromData.RData",
posRDataName = "posData.RData",
probenamesRDataName = "probeNames.RData",

imgheight = 350)

Not run:

Produce the coordinate and probe names files.

pChromPlot (outRDataName = "hs_mad.out.RData",
cghRDataName = "cghData.RData",
chromRDataName = "chromData.RData",
posRDataName = "posData.RData",
probenamesRDataName = "probeNames.RData",
imgheight = 350,
imagemap = TRUE)

End (Not run)

PNGs are in this directory
getwd ()

Explicitly stop cluster
sfStop ()

Clean up (DO NOT do this with objects you want to keep!!!)
load ("chrombData.RData")

load ("posData.RData")

load ("cghData.RData")

delete (cghData); rm(cghData)

delete (posData); rm(posData)

delete (chromData); rm(chromData)

unlink ("chromData.RData")

unlink ("posData.RData")
("cghData.RData")
("probeNames.RData")

unlink
unlink

lapply (hs_mad.out, delete)
rm (hs_mad.out)
unlink ("hs_mad.out .RData")

pSegment

Try to prevent problems in R CMD check

Sys.sleep(2)

Delete all png files and temp dir

setwd (originalDir)
unlink ("ADaCGH2_plot_tmp_dir",
Sys.sleep(2)

recursive

TRUE)

pSegment
rithms/methods

Parallelized/"unified" versions of several aCGH segementation algo-

Description

These functions parallelize several segmentation algorithms or (for HaarSeg) make their calling use

the same conventions as for other methods.

Usage

pSegmentDNAcopy (cghRDataName,

mad.threshold

alpha=0.01,

chromRDataName,
3,

merging = "mergeLevels",
TRUE,

smooth

nperm=10000,

p.method = "hybrid",
min.width = 2,

kmax=25,
eta

nmin=200,
0.05,trim

0.025,

undo.splits = "none",

undo.prune=0.

-)

pSegmentHaarSeg (cghRDataName,
merging
W vector (),
rawl
breaksFdrQ =

haarStartLevel =

haarEndLevel
pSegment HMM (cghRDataName,

aic.or.bic =

pSegmentBioHMM (cghRDataName,

merging = "mergeLevels",
"AIC" ,

aic.or.bic

-)

pSegmentCGHseg (cghRDataName,

n MAD n ,

05, undo.SD=3,

chromRDataName,
mad.threshold

3,

vector (),

0.001,
1,
5, ...)

chromRDataName,
merging = "mergelLevels",
"AIC", -._)

mad.threshold

3,

chromRDataName, posRDataName,
mad.threshold = 3,

chromRDataName, CGHseg.thres = -0.05,

10

pSegmentGLAD (cghRDataName,

pSegmentWavelets (cghRDataName,

pSegment

merging = "MAD", mad.threshold = 3, ...)
chromRDataName,
deltaN = 0.10,
forceGL = c(-0.15, 0.15),
deletion = -5,
amplicon = 1,
-)
chromRDataName, merging = "MAD",
mad.threshold = 3,
minDiff = 0.25,
minMergeDiff = 0.05,
thrLvl = 3, initClusterLevels = 10, ...)

Arguments

cghRDataName The Rdata file name that contains the £ £d £ with the aCGH data. This file can be
created using as . £ £df with a data frame with genes (probes) in rows and sub-
jects or arrays in columns. Function inputDataToADaCGHData produces
these type of files.

chromRDataName
The RData file name with the ff (short integer) vector with the chromosome
indicator. Function inputDataToADaCGHData produces these type of files.

posRDataName The RData file name with the ff double vector with the location (e.g., position in
kbases) of each probe in the chromosome. Function inputDataToADaCGHData
produces these type of files.

merging Merging method; for most methods one of "MAD" or "mergeLevels". For CBS

(pSegmentDNAcopy) also "none". This options does not apply to GLAD (which
has its own merging-like approach). See details.

mad.threshold

smooth

alpha
nperm
p.method
min.width
kmax

nmin

eta

Ifusingmerging = "MAD" the value such that all segments where abs(smoothed
value) > m*MAD will be declared aberrant —see p. 1141 of Ben-Yaacov and
Eldar. No effect if merging = "mergeLevels" (or "none").

For DNAcopy only. If TRUE (default) carry out smoothing as explained in
smooth.CNA.

For DNAcopy only. See segment.
For DNAcopy only. See segment.
For DNAcopy only. See segment.
For DNAcopy only. See segment.
For DNAcopy only. See segment.
For DNAcopy only. See segment.
For DNAcopy only. See segment.

pSegment 11

trim For DNAcopy only. See segment.
undo.splits For DNAcopy only. See segment.
undo.prune For DNAcopy only. See segment.
undo.SD For DNAcopy only. See segment.

W For HaarSeg: Weight matrix, corresponding to quality of measurment. Insert
1/(sigma**2) as weights if your platform output sigma as the quality of measur-
ment. W must have the same size as 1.

rawl For HaarSeg. Mininum of the raw red and raw green measurment, before the
log. rawl] is used for the non-stationary variance compensation. rawl must have
the same size as L.

breaksFdrQ For HaarSeg. The FDR q parameter. Common used values are 0.05, 0.01, 0.001.
Default value is 0.001.

haarStartLevel
For HaarSeg. The detail subband from which we start to detect peaks. The
higher this value is, the less sensitive we are to short segments. The default is
value is 1, corresponding to segments of 2 probes.

haarEndLevel For HaarSeg. The detail subband until which we use to detect peaks. The higher
this value is, the more sensitive we re to large trends in the data. This value
DOES NOT indicate the largest possible segment that can be detected. The
default is value is 5, corresponding to step of 32 probes in each direction.

aic.or.bic For HMM and BioHMM. One of "AIC" or "BIC". See ‘criteria’in runBioHMM.

CGHseg.thres The threshold for the adaptive penalization in Picard et al.’s CGHseg. See p.
13 of the original paper. Must be a negative number. The default value used in
the original reference is -0.5. However, our experience with the simulated data
in Willenbrock and Fridlyand (2005) indicates that for those data values around
-0.005 are more appropriate. We use here -0.05 as default.

deltaN Only for GLAD. See ‘deltaN’ in daglad.
forceGL Only for GLAD. See ‘forceGL’ in daglad.
deletion Only for GLAD. See ‘deletion’in daglad.
amplicon Only for GLAD. See ‘amplicon’in daglad.

minMergeDiff Used only when doing merging in the wavelet method of Hsu et al.. The finall
call as to which segments go together is done by a mergeLevels approach,
but an initial collapsing of very close values is performed (otherwise, we could
end up passing to mergeLevels as many initial levels as there are points).

minDiff For Wavelets (Hsu et al.). Minimum (absolute) difference between the medi-
ans of two adjacent clusters for them to be considered truly different. Clusters
"closer" together than this are collapsed together to form a single cluster.
thrivl The level used for the wavelet thresholding in Hsu et al.
initClusterLevels
For Wavelets (Hsu et al.). The initial number of clusters to form.

Additional arguments; not used.

Details

In most cases, these are wrappers to the original code, with modifications for parallelization and for
using f £ objects. The functions will not work if you try to use them with the regular R data frames,
matrices, and vectors.

12 pSegment

We have parallelized all computations by array (in contrast to former versions of ADaCGH, where
some computations, depending on number of samples, could be parallelized over array*chromosome).

CGHseg has been implemented here following the original authors description. Note that several
publications incorrectly claim they use the CGHseg approach when, actually, they are only using
the "segment" function in the "tilingArray" package, but they are missing the key step of choos-
ing the optimal number of segments (see p. 13 in Picard et al, 2005). See out internal function
"piccardsKO".

For DNAcopy, BloHMM and HMM the smoothed results are merged, by default by the mergeLevels
algorithm, as recommended in Willenbrock and Fridlyand, 2005. Merging is also done in GLAD
(with GLAD’s own merging algorithm). For HaarSeg, calling/merging is carried out using MAD,
following page i141 of Ben-Yaacov and Eldar, section 2.3, "Determining aberrant intervals": a
MAD (per their definition) is computed and any segment with absolute value larger than mad.threshold
* MAD is considered aberrant. Merging is also performed for CGHseg (the default, however, is
MAD, not mergeLevels). Merging (using either of "mergeLevels" or "MAD") can also be used
with the wavelet-based method of Hsu et al.; please note that the later is an experimental feature
implemented by us, and there is no evidence of its performance.

In summary, for all segmentation methods (except GLAD) merging is available as either "mergeLevels"
or "MAD". For DNAcopy, CGHseg, and wavelets as in hsu et al., you can also choose no merging,
though this will rarely be what you want (we offer this options, to allow using original authors’
choices in their first descriptions of methods).

When using mergeLevels, we map the results to states of "Alteration", so that we categorize each
probe as taking one, and only one, of three possible values, -1 (loss of genomic DNA), O (no change
in DNA content), +1 (gain of genomic DNA). We have made the assumption, in this mapping, that
the "no change" class is the one that has the absolute value closest to zero, and any other classes
are either gains or losses. When the data are normalized, the "no change" class should be the most
common one. When using MAD this step is implicit in the procedure (any segment with absolute
value larger than mad.threshold * MAD is considered aberrant).

Note that "mergeLevels", in addition to being used for calling gains and losses, results in a decrease
in the number of distinct smoothed values, since it can merge two or more adjacent smoothed levels.
"MAD", in contrast, performs no merging as such, but only calling.

Value

A list of two components:

outSmoothed An ffdf object with smoothed values. Each column is an array or sample, and
each row a probe.

outState An ffdf object with calls for probes. Each column is an array or sample,
and each row a probe. For methods that accept "none" as an argument to
‘merging’, the states cannot be interpreted directly as gain or loss; they are
simply discrete codes for distinct segments.

Rows and columns of each element can be accessed in the usual way for £ £df objects, but accept
also most of the usual R operations for data frames.

Author(s)

The code for DNAcopy, HMM, BioHMM, and GLAD are basically wrappers around the original
functions by their corresponding authors, with some modiffications for parallelization and usage of
ff objects. The original packages are: DNAcopy, aCGH, snapCGH, cgh, GLAD, respectively. The
CGHseg method uses package tilingArray.

pSegment 13

HaarSeg has been turned into an R package, available from https://r-forge.r-project.
org/projects/haarseg/. That package uses, at its core, the same R and C code as we do,
from Ben-Yaacov and Eldar. We have not used the available R package for historical reasons (we
used Eldar and Ben-Yaacov’s C and R code in the former ADaCGH package, before a proper R
package was available).

For the wavelet-based method we have only wrapped the code that was kindly provided by L. Hsu
and D. Grove, and parallelized a few calls. Their original code is included in the sources of the
package.

Parallelization and modifications for using ff and additions are by Ramon Diaz-Uriarte <rdiaz02@gmail . com>

References

Carro A, Rico D, Rueda O M, Diaz-Uriarte R, and Pisano DG. (2010). waviCGH: a web application
for the analysis and visualization of genomic copy number alterations. Nucleic Acids Research, 38
Suppl:W182-187.

Fridlyand, Jane and Snijders, Antoine M. and Pinkel, Dan and Albertson, Donna G. (2004). Hidden
Markov models approach to the analysis of array CGH data. Journal of Multivariate Analysis, 90:
132-153.

Hsu L, Self SG, Grove D, Randolph T, Wang K, Delrow JJ, Loo L, Porter P. (2005) Denoising
array-based comparative genomic hybridization data using wavelets. Biostatistics, 6:211-26.

Hupe, P. and Stransky, N. and Thiery, J. P. and Radvanyi, F. and Barillot, E. (2004). Analysis of
array CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics, 20: 3413-3422.

Lingjaerde OC, Baumbusch LO, Liestol K, Glad I, Borresen-Dale AL. (2005). CGH-Explorer: a
program for analysis of CGH-data. Bioinformatics, 21: 821-822.

Marioni, J. C. and Thorne, N. P. and Tavare, S. (2006). BloHMM: a heterogeneous hidden Markov
model for segmenting array CGH data. Bioinformatics, 22: 1144—1146.

Olshen, A. B. and Venkatraman, E. S. and Lucito, R. and Wigler, M. (2004) Circular binary
segmentation for the analysis of array-based DNA copy number data. Biostatistics, 4, 557-572.
http://www.mskcc.org/biostat/~olshena/research.

Picard, F. and Robin, S. and Lavielle, M. and Vaisse, C. and Daudin, J. J. (2005). A statistical
approach for array CGH data analysis. BMC Bioinformatics, 6,27. http://dx.doi.org/10.
1186/1471-2105-6-27.

Price TS, Regan R, Mott R, Hedman A, Honey B, Daniels RJ, Smith L, Greenfield A, Tiganescu
A, Buckle V, Ventress N, Ayyub H, Salhan A, Pedraza-Diaz S, Broxholme J, Ragoussis J, Higgs
DR, Flint J, Knight SJ. (2005) SW-ARRAY: a dynamic programming solution for the identification
of copy-number changes in genomic DNA using array comparative genome hybridization data.
Nucleic Acids Res., 33:3455-64.

Willenbrock, H. and Fridlyand, J. (2005). A comparison study: applying segmentation to array
CGH data for downstream analyses. Bioinformatics, 21, 4084—4091.

Diaz-Uriarte, R. and Rueda, O.M. (2007). ADaCGH: A parallelized web-based application and R
package for the analysis of aCGH data, PLoS ONE, 2: e737.

Ben-Yaacov, E. and Eldar, Y.C. (2008). A Fast and Flexible Method for the Segmentation of aCGH
Data, Bioinformatics, 24: 1139-i145.

See Also

pChromPlot, inputDataToADaCGHData

https://r-forge.r-project.org/projects/haarseg/
https://r-forge.r-project.org/projects/haarseg/
http://www.mskcc.org/biostat/~olshena/research
http://dx.doi.org/10.1186/1471-2105-6-27
http://dx.doi.org/10.1186/1471-2105-6-27

14 pSegment

Examples

Create a temp dir for storing output.
(Not needed, but cleaner).

dir.create ("ADaCGH2_example_tmp_dir")

originalDir <- getwd()
setwd ("ADaCGH2_example_tmp_dir")

Start a socket cluster. Change the appropriate number of CPUs
for your hardware

snowfallInit (universeSize = 2, typecluster = "SOCK")

Get input data in ff format

To speed up R CMD check, we do not use inputExl, but a much smaller
data set. When you try the examples, you might one to use

inputEx1l instead.

Not run:

fname <- list.files(path = system.file("data", package = "ADaCGH2"),
full.names = TRUE, pattern = "inputEx1l")

End (Not run)

fname <- list.files(path = system.file("data", package = "ADaCGH2"),
full.names = TRUE, pattern = "inputEx2")

tableChromArray <- inputDataToADaCGHData (filename = fname)

Run all segmentation methods

cbs.out <- pSegmentDNAcopy ("cghData.RData",
"chromData.RData")
cbs_mad.out <- pSegmentDNAcopy ("cghData.RData",

"chromData.RData", merging = "MAD")
cbs_none.out <- pSegmentDNAcopy ("cghData.RData",
"chromData.RData", merging = "none")

names (cbs.out)

cbs.out$outState ## not the best way
open (cbs.out$outSmoothed) ## better
cbs.out$outSmoothed

rle (cbs.out$outSmoothed[, 11])

open (cbs_mad.out$outSmoothed)
rle (cbs_mad.out$outSmoothed[, 11)

pSegment

hs_ml.out <- pSegmentHaarSeg("cghData.RData",
"chromData.RData", merging

hs_mad.out <- pSegmentHaarSeg("cghData.RData",
"chromData.RData", merging

open (hs_ml.out[[2]])

open (hs_mad.out [[2]])
summary (hs_ml.out[[2]]1[,])
summary (hs_mad.out[[2]]1[,])

hmm_ml.out <- pSegmentHMM ("cghData.RData",
"chromData.RData", merging

hmm_mad.out <- pSegmentHMM ("cghData.RData",
"chromData.RData", merging

hmm_mad_bic.out <- pSegmentHMM ("cghData.RData",
"chromData.RData", merging
aic.or.bic = "BIC")

we can open the two ffdfs in the list with lapply
lapply (hmm_ml.out, open)

lapply (hmm_mad.out, open)

lapply (hmm_mad_bic.out, open)

3])$lengths

rle (hmm_ml.out[[2]
[3]) $lengths

110
rle (hmm_mad.out[[2]]],

"mergeLevels")

"MAD")

"mergelLevels")
n MAD n)

"MAD" ,

MAD and mergelevels seem to make similar calls in second array

rle (hmm_ml.out[[2]][, 2])S$Slengths
rle (hmm_mad.out [[2]][, 2])$lengths

but smoothed values are grouped differently
rle (hmm_ml.out[[1]][, 2])S$lengths
rle (hmm_mad.out[[1]1]1[, 2])$lengths

And BIC leads to differences compared to AIC
open (hmm_mad_bic.out[[2]])

rle (hmm_mad_bic.out[[1]][, 2])S$lengths

rle (hmm_mad_bic.out[[2]][, 2])S$lengths

BioHMM is very slow and can crash
Not run:
biohmm_ml.out <- pSegmentBioHMM ("cghData.RData",
"chromData.RData",
"posData.RData",
merging = "mergelevels")
biohmm_mad.out <- pSegmentBioHMM ("cghData.RData",
"chromData.RData",
"posData.RData",
merging = "MAD")
biohmm_mad_bic.out <- pSegmentBioHMM ("cghData.RData",
"chromData.RData",
"posData.RData",
merging = "MAD",
aic.or.bic = "BIC")

15

16

pSegment

lapply (biohmm_ml.out, open)

lapply (biohmm_mad.out, open)

lapply (biohmm_mad_bic.out, open)

summary (biohmm_ml.out[[2]][,])

summary (biohmm_mad.out[[2]][,])

summary (biohmm_mad_bic.out[[2]]11[,]1)

summary (biohmm ml.out [[1]1]11[,])

summary (biohmm_mad.out [[1]][,])

summary (biohmm _mad_bic.out[[1]1][,]1)

End (Not run)

cghseg_ml.out <- pSegmentCGHseg ("cghData.RData",
"chromData.RData", merging = "mergelLevels")

cghseg_mad.out <- pSegmentCGHseg ("cghData.RData",
"chromData.RData", merging = "MAD")

lapply (cghseg_ml.out, open)

lapply (cghseg_mad.out, open)

summary (cghseg_ml.out [[1]1]11[,])

summary (cghseg_mad.out [[1]1]1[,])

summary (cghseg_ml.out[[2]1]11[,])

summary (cghseg_mad.out [[2]]1[,])

glad.out <- pSegmentGLAD ("cghData.RData",

"chromData.RData")

waves_ml.out <- pSegmentWavelets ("cghData.RData",
"chromData.RData", merging = "mergelLevels")

waves_mad.out <- pSegmentWavelets ("cghData.RData",
"chromData.RData", merging = "MAD")

lapply (waves_ml.out, open)

lapply (waves_mad.out, open)

151

summary (waves_ml.out [[1]] [,
[(111°0,1)

summary (waves_mad.out [

I

summary (waves_ml.out [[2]] [,
(2110, 1)

summary (waves_mad.out [

#Hi#HFH#HEHF#H#F Clean up actions

(These are not needed. They are convenient here, to prevent
#H44 leaving garbage in your hard drive. In "real life" you will
#H44# have to decide what to delete and what to store).

Explicitly stop cluster
sfStop ()

pSegment

All objects (RData and ff) are left in this directory
getwd ()

We will clean it up, and do it step-by-step
BEWARE: DO NOT do this with objects you want to keep!!!

Remove ff and RData for the data

load ("chromData.RData")
load ("posData.RData")
load ("cghData.RData")

delete (cghData); rm(cghData)
delete (posData); rm(posData)
delete (chromData); rm(chromData)
unlink ("chrombata.RData")
(
(
(

unlink ("posData.RData")
unlink ("cghData.RData")
unlink ("probeNames.RData")

Remove ff and R objects with segmentation results

lapply (cbs.out, delete)
rm(cbs.out)

lapply (cbs_mad.out, delete)
rm(cbs_mad.out)

lapply (cbs_none.out, delete)
rm(cbs_none.out)

lapply (hs_ml.out, delete)
rm (hs_ml.out)

lapply (hs_mad.out, delete)
rm (hs_mad.out)

lapply (hmm_ml.out, delete)
rm (hmm_ml.out)

lapply (hmm_mad.out, delete)
rm (hmm_mad.out)

lapply (hmm_mad_bic.out, delete)
rm (hmm_mad_bic.out)

lapply (cghseg_ml.out, delete)
rm(cghseg_ml.out)

lapply (cghseg_mad.out, delete)

rm(cghseg_mad.out)

lapply(glad.out, delete)
rm(glad.out)

17

18 snowfalllnit

lapply (waves_mad.out, delete)
rm (waves_mad.out)

lapply (waves_ml.out, delete)
rm (waves_ml.out)

Try to prevent problems in R CMD check
Sys.sleep(2)

Delete temp dir

setwd(originalDir)

unlink ("ADaCGH2_example_tmp_dir", recursive = TRUE)
Sys.sleep(2)

snowfallInit Initialize a cluster of workstations using snowfall

Description

With either MPI or sockets, use snowfall to initialize a cluster to have ADaCGH2 run in parallel.
Check possible errors during initialization.

Usage
snowfallInit (universeSize = NULL, wdir = getwd(),
minUniverseSize = 2, exit_on_fail = FALSE,
maxnumcpus = 500, typecluster = "SOCK",
socketHosts = NULL,
RNG = "RNGstream")

Arguments

universeSize Desired size of cluster (number of CPUs). Can be set to NULL. See details.

wdir The common —e.g., NFS mounted resource, a directory in your machine if
running on only one computer, etc — directory. We need a common directory
for the graphics and ff files so that they are all found in the same location.
minUniverseSize
The minimal LAM/MPI universe for the function to return successfully. If the
function determines that the available number of slaves is smaller than minUni-
verseSize it will fail (if exit_on_fail = TRUE) or give a warning.

exit_on_fail If TRUE, kills R session if it cannot run succesfully. Setting it to TRUE is
something you probably only want to do when running as an unattended service.

maxnumcpus Passed directly to snowfall. This is the new value of sfSetMaxCPUs set to a
very large number to allow us to use large clusters.

typecluster Either "MPI" or "SOCK". To use MPI, BEFORE calling this function you must
configure your MPI environment properly and then load the R package Rmpi.

snowfalllnit 19

socketHosts Passedtosnowfall—-init.

RNG The type of random number generator. One of "RNGstream" (to use rlecuyer)
or "SPRNG" (to use the rsprng package). If the generator requested is not
available, the function tries to use the other one (givin a warning). To use either
of these you need to have the appropriate package installed.

Details

This function is designed to be used mainly with MPI, but clusters with sockets might be easier to
create in any operating system without additional software. Moreover, installing Rmpi in Windows
and Mac is not easy. Thus, by default, the cluster is one of sockets, and Rmpi is listed in "Enhances"
(not "Depends" nor "Suggests"). But this function will fail if you try to use an MPI cluster and do
not have Rmpi loaded. Moreover, even if you successfully install and load Rmpi, note that the
cluster that gets created by default might not be the want you want (e.g., you might end up with
a universe size of one), so it is up to you to configure and, if appropriate, start/boot your MPI
environment before loading Rmpi.

When using MPI, the recommended usage is to set only minUniverseSize, leaving "universeSize" as
NULL. Then, the cluster will use as many nodes as available to MPI (found from "mpi.universe.size()"),
or fail if the available number of nodes is less than minUniverseSize. This usage makes sense in
many clusters where the actual number of nodes available can vary, but you definitely do not want

to run a job unless a minimal number of nodes can be used. (Moreover, mpi.universe.size returning

a very small number can be an indication of a configuration file problem).

If "universeSize" is set, this will be the number of nodes of the cluster (unless you are using MPI
and mpi.universe.size is smaller, in which case the function will fail).
Value

This function is used to create a cluster.

Author(s)

Ramon Diaz-Uriarte <rdiaz02@gmail . com>

Examples

snowfallInit (universeSize = 2, typecluster = "SOCK")

Not run:

If you are using MPI, a better approach would be
snowfallInit (minUniverseSize = 4, typecluster = "MPI")
where minUniverseSize is set to whatever

you regard as an unacceptable minimum

End (Not run)

Better to explicitly stop cluster after you are done
sfStop ()

Index

*Topic 1O
inputDataToADaCGHData, 1
outputToCGHregions, 4
pChromPlot, 6

xTopic datasets
inputExl1, 3
inputEx2, 4

+Topic hplot
pChromPlot, 6

+Topic nonparametric
pSegment, 9

+Topic programming
snowfalllInit, 18

as.ffdf, 6, 10
as.MAList,]

CGHregions, 4, 5

daglad, 11
dim.Seglist, /

££,1,11
ffdf, 6, 10, 12

inputDataToADaCGHData, 1,6, 7, 10, 13
inputEx1, 3
inputEkx2,4

outputToCGHregions, 4

par, 7

pChromPlot, 6, 13

png, 7

pSegment, 4-7,9
pSegmentBioHMM (pSegment), 9
pSegmentCGHseqg (pSegment), 9
pSegmentDNAcopy (pSegment), 9
pSegmentGLAD (pSegment), 9
pSegmentHaarSeqg (pSegment), 9
pSegmentHMM (pSegment), 9
pSegmentWavelets (pSegment), 9

read.clonesinfo, /
read.table, 2

20

runBioHMM, /1]

segment, 10, 11
sfSetMaxCPUs, I8
smooth.CNA, 10
snowfall—-init, /9
snowfallInit, 18

	inputDataToADaCGHData
	inputEx1
	inputEx2
	outputToCGHregions
	pChromPlot
	pSegment
	snowfallInit
	Index

