
tiger User Guide

Antti Honkela, Pei Gao, Jonatan Ropponen,
Magnus Rattray, and Neil D. Lawrence

April 7, 2010

1 Abstract

The tiger package implements our methodology of Gaussian process differential
equation models for analysis of gene expression time series from single input
motif networks. The package can be used for inferring unobserved transcription
factor (TF) protein concentrations from expression measurements of known tar-
get genes, or for ranking candidate targets of a TF.

2 Citing tiger

The tiger package is based on a body of methodological research. Citing tiger in
publications will usually involve citing one or more of the methodology papers
(Lawrence et al., 2007; Gao et al., 2008; Honkela et al., 2010) that the software
is based on as well as citing the software package itself.

3 Introductory example analysis - Drosophila
development

In this section we introduce the main functions of the puma package by repeating
some of the analysis from the PNAS paper (Honkela et al., 2010)1.

3.1 Installing the tiger package

The recommended way to install tiger is to use the biocLite function available
from the bioconductor website. Installing in this way should ensure that all
appropriate dependencies are met.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite("tiger")

To load the package start R and run

> library(tiger)

1Note that the results reported in the paper were run using an earlier version of this package
for MATLAB, so there can be minor differences.

1



3.2 Loading the data

To get started, you need some preprocessed time series expression data. If
the data originates from Affymetrix arrays, we highly recommend processing it
with mmgmos from the puma package. This processing extracts error bars on
the expression measurements directly from the array data to allow judging the
reliability of individual measurements. This information is directly utilised by
all the models in this package.

To start from scratch on Affymetrix data, the .CEL files from ftp://ftp.
fruitfly.org/pub/embryo_tc_array_data/ may be processed using:

> # Names of CEL files

> expfiles <- c(paste("embryo_tc_4_", 1:12, ".CEL", sep=""),

+ paste("embryo_tc_6_", 1:12, ".CEL", sep=""),

+ paste("embryo_tc_8_", 1:12, ".CEL", sep=""))

> # Load the CEL files

> expdata <- ReadAffy(filenames=expfiles,

+ celfile.path="embryo_tc_array_data")

> # Setup experimental data (observation times)

> pData(expdata) <- data.frame("time.h" = rep(1:12, 3),

+ row.names=rownames(pData(expdata)))

> # Run mmgMOS processing (requires several minutes to complete)

> drosophila_mmgmos_exprs <- mmgmos(expdata)

> drosophila_mmgmos_fragment <- drosophila_mmgmos_exprs

This data needs to be further processed to make it suitable for our models.
This can be done using

> drosophila_gpsim_fragment <-

+ processData(drosophila_mmgmos_fragment,

+ experiments=rep(1:3, each=12))

Here the last argument specifies that we have three independent time series
of measurements.

In order to save time with the demos, a part of the result of this is included
in this package and can be loaded using

> data(drosophila_gpsim_fragment)

3.3 Learning individual models

Let us now recreate some the models shown in the plots of the PNAS pa-
per (Honkela et al., 2010):

> # FBgn names of target genes

> targets <- c('FBgn0003486', 'FBgn0033188', 'FBgn0035257')
> # Load gene annotations

> library(annotate)

> aliasMapping <- getAnnMap("ALIAS2PROBE",

+ annotation(drosophila_gpsim_fragment))

> # Get the probe identifier for TF 'twi'
> twi <- get('twi', env=aliasMapping)

> # Load alternative gene annotations

2



> fbgnMapping <- getAnnMap("FLYBASE2PROBE",

+ annotation(drosophila_gpsim_fragment))

> # Get the probe identifiers for target genes

> targetProbes <- mget(targets, env=fbgnMapping)

> st_models <- list()

> # Learn single-target models for each gene individually

> for (i in seq(along=targetProbes)) {

+ st_models[[i]] <- GPLearn(drosophila_gpsim_fragment,

+ TF=twi, targets=targetProbes[i],

+ useGpdisim=TRUE, quiet=TRUE)

+ }

> # Learn a joint model for all targets

> mt_model <- GPLearn(drosophila_gpsim_fragment, TF=twi,

+ targets=targetProbes,

+ useGpdisim=TRUE, quiet=TRUE)

> # Display the joint model parameters

> show(mt_model)

Gaussian process driving input single input motif model:
Number of time points:
Driving TF: 143396_at
Target genes (3):
148227_at
152715_at
147995_at

Basal transcription rate:
Gene 1: 31.4901487775542
Gene 2: 0.0077988721171123
Gene 3: 1.48241754617025e-06

Kernel:
Multiple output block kernel:
Block 1
Normalised version of the kernel.
RBF inverse width: 0.7718466 (length scale 1.138242)
RBF variance: 1.754535
Block 2
Normalised version of the kernel
DISIM decay: 0.07285956
DISIM inverse width: 0.7718466 (length scale 1.138242)
DISIM Variance: 1
SIM decay: 2005.556
SIM Variance: 0.001472529
RBF Variance: 1.754535
Block 3
Normalised version of the kernel
DISIM decay: 0.07285956
DISIM inverse width: 0.7718466 (length scale 1.138242)
DISIM Variance: 1
SIM decay: 0.4985881
SIM Variance: 0.03226757

3



2 4 6 8 10

0.
00

0
0.

01
0

Time

Inferred TF Protein Concentration

2 4 6 8 10

0
1

2
3

Time

FBgn0003900 mRNA (input)

● ●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10

0
1

2
3

Time

FBgn0003486 mRNA

● ●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10

0.
00

0
0.

01
0

Time

Inferred TF Protein Concentration

2 4 6 8 10

0
1

2
3

Time

FBgn0003900 mRNA (input)

● ●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10

0
1

2
3

4

Time

FBgn0003486 mRNA

●
●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10

0.
00

0
0.

00
8

Time

Inferred TF Protein Concentration

2 4 6 8 10

0.
0

1.
5

3.
0

Time

FBgn0003900 mRNA (input)

● ●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10

0.
0

1.
5

3.
0

Time

FBgn0003486 mRNA

●
●

●

●

●

●
● ● ● ● ● ●

Figure 1: Single target models for the gene FBgn0003486. The models for each
repeated time series are shown in different columns.

RBF Variance: 1.754535
Block 4
Normalised version of the kernel
DISIM decay: 0.07285956
DISIM inverse width: 0.7718466 (length scale 1.138242)
DISIM Variance: 1
SIM decay: 0.0002446364
SIM Variance: 0.003265287
RBF Variance: 1.754535

Log-likelihood: -31.84288

3.4 Visualising the models

The models can be plotted using commands like

> GPPlot(st_models[[1]], nameMapping=getAnnMap("FLYBASE",

+ annotation(drosophila_gpsim_fragment)))

> GPPlot(mt_model, nameMapping=getAnnMap("FLYBASE",

+ annotation(drosophila_gpsim_fragment)))

4



2 4 6 8 10 12

0
1

2
3

4

Time

Inferred TF Protein Concentration

2 4 6 8 10 12

0
1

2
3

Time

FBgn0003900 mRNA (input)

● ●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10 12

0
1

2
3

Time

FBgn0003486 mRNA

● ●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10 12

0.
0

1.
0

2.
0

Time

FBgn0033188 mRNA

● ● ●
●

●

●

● ● ●

●

●

●

2 4 6 8 10 12

0.
0

1.
0

2.
0

Time

FBgn0035257 mRNA

● ● ● ● ●

●
●

●
●

●
●

●

Figure 2: Multiple-target model for all the example genes. The call creates
independent figures for each repeated time series.

5



3.5 Ranking the targets

Bulk ranking of candidate targets can be accomplished using

> ## Rank the targets, filtering weakly expressed genes with average

> ## expression z-score below 1.8

> scores <- GPRankTargets(drosophila_gpsim_fragment, TF=twi,

+ testTargets=targetProbes,

+ options=list(quiet=TRUE),

+ filterLimit=1.8)

> ## Sort the returned list according to log-likelihood

> scores <- sort(scores, decreasing=TRUE)

> write.scores(scores)

"log-likelihood" "null_log-likelihood"
"147995_at" 6.75970270587137 -487.893231050121
"152715_at" -1.51920691642152 -539.73619673943
"148227_at" -1.52526566233162 -73.4806804255218

To save space, GPRankTargets does not return the models by default. If
those are needed later e.g. for plotting, they can be recreated using the inferred
parameters saved together with the ranking using

> topmodel <- generateModels(drosophila_gpsim_fragment,

+ scores[1])

> show(topmodel)

[[1]]
Gaussian process driving input single input motif model:
Number of time points:
Driving TF: 143396_at
Target genes (1):
147995_at

Basal transcription rate:
Gene 1: 0.000135154902328578

Kernel:
Multiple output block kernel:
Block 1
Normalised version of the kernel.
RBF inverse width: 0.760276 (length scale 1.146870)
RBF variance: 1.804526
Block 2
Normalised version of the kernel
DISIM decay: 0.01789634
DISIM inverse width: 0.760276 (length scale 1.146870)
DISIM Variance: 1
SIM decay: 0.01952063
SIM Variance: 0.002722844
RBF Variance: 1.804526

Log-likelihood: 6.759703

6



3.6 Ranking using known targets with multiple-target mod-
els

Ranking using known targets with multiple-target models can be accomplished
simply by adding the knownTargets argument

> ## Rank the targets, filtering weakly expressed genes with average

> ## expression z-score below 1.8

> scores <- GPRankTargets(drosophila_gpsim_fragment, TF=twi,

+ knownTargets=targetProbes[1],

+ testTargets=targetProbes[2:3],

+ options=list(quiet=TRUE),

+ filterLimit=1.8)

> ## Sort the returned list according to log-likelihood

> scores <- sort(scores, decreasing=TRUE)

> write.scores(scores)

"log-likelihood" "null_log-likelihood"
"152715_at" -28.0896855288335 -539.73619673943
"147995_at" -206.238519107964 -487.893231050121

3.7 Running ranking in a batch environment

GPRankTargets can be easily run in a batch environment using the argument
scoreSaveFile. This indicates a file to which scores are saved after processing
each gene. Thus one could, for example, split the data to, say, 3 separate
blocks according to the reminder after division by 3 and run each of these
independently. The first for loop could then be run in parallel (e.g. as separate
jobs on a cluster), as each step is independent of the others. After these have
all completed, the latter loop could be used to gather the results.

> for (i in seq(1, 3)) {

+ targetIndices <- seq(i,

+ length(featureNames(drosophila_gpsim_fragment)), by=3)

+ outfile <- paste('ranking_results_', i, '.Rdata', sep='')
+ scores <- GPrankTargets(preprocData, TF=twi,

+ testTargets=targetIndices,

+ scoreSaveFile=outfile)

+ }

> for (i in seq(1, 3)) {

+ outfile <- paste('ranking_results_', i, '.Rdata', sep='')
+ load(outfile)

+ if (i==1)

+ scores <- scoreList

+ else

+ scores <- c(scores, scoreList)

+ }

> show(scores)

7



4 Experimental feature: Using non-Affymetrix
data

Using non-Affymetrix data, or data without associated uncertainty information
for the expression data in general, requires more because of two reasons

• noise variances need to be estimated together with other model parame-
ters; and

• weakly expressed genes cannot be easily filtered a priori.

The first of these is automatically taken care of by all the above functions,
but the latter requires some extra steps after fitting the models.

In order to get started, you need to create an ExpressionTimeSeries object
of your data set. This can be accomplished with the function

> procData <- processRawData(data, times=c(...),

+ experiments=c(...))

Filtering of weakly expressed genes requires more care and visualising the
fitted models is highly recommended to avoid mistakes.

Based on initial experiments, it seems possible to perform the filtering based
on the statistic loglikelihoods(scores) - baseloglikelihoods(scores),
but selection of suitable threshold is highly dataset specific.

References

Pei Gao, Antti Honkela, Magnus Rattray, and Neil D Lawrence. Gaus-
sian process modelling of latent chemical species: applications to inferring
transcription factor activities. Bioinformatics, 24(16):i70–i75, Aug 2008.
doi: 10.1093/bioinformatics/btn278. URL http://dx.doi.org/10.1093/
bioinformatics/btn278.

Antti Honkela, Charles Girardot, E. Hilary Gustafson, Ya-Hsin Liu, Eileen E.M.
Furlong, Neil D. Lawrence, and Magnus Rattray. A model-based method for
transcription factor target identification with limited data. Proc Natl Acad
Sci U S A, 2010. In press.

Neil D. Lawrence, Guido Sanguinetti, and Magnus Rattray. Modelling transcrip-
tional regulation using Gaussian processes. In B. Schölkopf, J. C. Platt, and
T. Hofmann, editors, Advances in Neural Information Processing Systems,
volume 19, pages 785–792. MIT Press, Cambridge, MA, 2007.

8


