\name{sam.plot2} \alias{sam.plot2} \title{SAM Plot} \description{ Generates a SAM plot for a specified value of Delta. } \usage{ sam.plot2(object, delta, pos.stats = NULL, sig.col = 3, xlim = NULL, ylim = NULL, main = NULL, xlab = NULL, ylab = NULL, pty = "s", lab = c(10, 10, 7), pch = NULL, sig.cex = 1, ...) } \arguments{ \item{object}{an object of class SAM.} \item{delta}{a numeric value specifying the value of \eqn{\Delta}{Delta} for which the SAM plot should be generated.} \item{pos.stats}{an integer between 0 and 2. If \code{pos.stats = 1}, general information as the number of significant genes and the estimated FDR for the specified value of \code{delta} will be plotted in the upper left corner of the plot. If \code{pos.stats = 2}, these information will be plotted in the lower right corner. If \code{pos.stats = 0}, no information will be plotted. By default, \code{pos.stats = 1} if the expression score \eqn{d} can be both positive and negative, and \code{pos.stats = 2} if \eqn{d} can only take positive values.} \item{sig.col}{a specification of the color of the significant genes. If \code{sig.col} has length 1, all the points corresponding to significant genes are marked in the color specified by \code{sig.col}. If \code{length(sig.col) == 2}, the down-regulated genes, i.e. the genes with negative expression score \eqn{d}, are marked in the color specified by \code{sig.col}[1], and the up-regulated genes, i.e. the genes with positive \eqn{d}, are marked in the color specified by \code{sig.col}[2]. For a description of how colors are specified, see \code{\link{par}}.} \item{xlim}{a numeric vector of length 2 specifying the x limits (minimum and maximum) of the plot.} \item{ylim}{a numeric vector of length 2 specifying the y limits of the plot.} \item{main}{a character string naming the main title of the plot.} \item{xlab}{a character string naming the label of the x axis.} \item{ylab}{a character string naming the label of the y axis.} \item{pty}{a character specifying the type of plot region to be used. \code{"s"} (default) generates a square plotting region, and \code{"m"} the maximal plotting region.} \item{lab}{a numeric vector of length 3 specifying the approximate number of tickmarks on the x axis and on the y axis and the label size.} \item{pch}{either an integer specifying a symbol or a single character to be used as the default in plotting points. For a description of how \code{pch} can be specified, see \code{\link{par}}.} \item{sig.cex}{a numerical value giving the amount by which the symbols of the significant genes should be scaled relative to the default.} \item{\dots}{further graphical parameters. See \code{\link{plot.default}} and \code{\link{par}}.} } \value{ A SAM plot. } \references{ Tusher, V.G., Tibshirani, R., and Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. \emph{PNAS}, 98, 5116-5121. } \author{Holger Schwender, \email{holger.schw@gmx.de}} \seealso{ \code{\link{SAM-class}},\code{\link{sam}},\code{\link{md.plot}} } \examples{\dontrun{ # Load the package multtest and the data of Golub et al. (1999) # contained in multtest. library(multtest) data(golub) # Perform a SAM analysis for the two class unpaired case assuming # unequal variances. sam.out <- sam(golub, golub.cl, B=100, rand=123) # Generate a SAM plot for Delta = 2 sam.plot2(sam.out, 2) # Alternatively way of generating the same SAM plot plot(sam.out, 2) # As an alternative, the MD plot can be generated. md.plot(sam.out, 2) }} \keyword{hplot}