\name{estimateSigmaMVbeta} \alias{estimateSigmaMVbeta} \title{Zero mean multivariate t-dist. with covariate dependent scale.} \description{ Estimate the parameters \eqn{\Sigma}{Sigma}, \eqn{m}{m} and \eqn{\nu}{v} of the multivariate t-distribution with zero expectation, where \eqn{\nu}{v} is modeled as smooth function of a covariate. } \usage{ estimateSigmaMVbeta(y, x, maxIter = 200, epsilon = 1e-06, verbose = FALSE, nknots = 10, nOut = 2000, nIn = 4000, iterInit = 3, br = NULL) } \arguments{ \item{y}{Data matrix} \item{x}{Covariate vector} \item{maxIter}{Maximum number of iterations} \item{epsilon}{Convergence criteria} \item{verbose}{Print computation info or not} \item{nknots}{Number of knots of spline for \eqn{\nu}{v}} \item{nOut}{Parameter for calculating knots, see getKnots} \item{nIn}{Parameter for calculating knots, see getKnots} \item{iterInit}{Number of iteration in when initiating \eqn{\Sigma}{Sigma}} \item{br}{Knots, overrides nknots, n.out and n.in} } \details{ The multivariate t-distribution is parametrized as: \deqn{y|c \sim N(\mu,c\Sigma)}{y|c ~ N(mu,c*Sigma)} \deqn{c \sim \mbox{InvGamma}(m/2,m\nu/2)}{c ~ InvGamma(m/2,m*v/2)} where \eqn{\nu}{v} is function of the covariate x: \eqn{\nu(x)}{v(x)} and \eqn{N}{N} denotes a multivariate normal distribution, \eqn{\Sigma}{Sigma} is a covariance matrix and \eqn{\mbox{InvGamma}(a,b)}{InvGamma(a,b)} is the inverse-gamma distribution with density function \deqn{f(x)=(b)^{a} \exp\{-b/x\} x^{-a-1}/\Gamma(a)}{ f(x)=b^a exp\{-b/x\} x^{-a-1} /Gamma(a)} A cubic spline is used to parameterize the smooth function \eqn{\nu(x)}{v(x)} \deqn{\nu(x) = \exp\{ H(x)^T \beta \}}{v(x)=exp{H(x)^T beta}} where \eqn{H:R \to R^{2p-1}}{H:R->R^(2p-1)} is a set B-spline basis functions for a given set of p interior spline-knots, see chapter 5 of Hastie et al. (2001). In this application \eqn{\mu}{mu} equals zero, and m is the degrees of freedom. For details about the model see Kristiansson et al. (2005), \eqn{\mbox{\AA}}{A}strand et al. (2007a,2007b). } \value{ \item{Sigma}{Estimated covariance matrix for y} \item{m}{Estimated shape parameter for inverse-gamma prior for gene variances} \item{v}{Estimated scale parameter curve for inverse-gamma prior for gene variances} \item{converged}{T if the EM algorithms converged} \item{iter}{Number of iterations} \item{modS2}{Moderated estimator of gene-specific variances} \item{histLogS2}{Histogram of log(s2) where s2 is the ordinary variance estimator} \item{fittedDensityLogS2}{The fitted density for log(s2)} \item{logs2}{Variance estimators, logged with base 2.} \item{beta}{Estimated parameter vector \eqn{\beta}{beta} of spline for \eqn{\nu(x)}{v(x)} } \item{knots}{The knots used in spline for \eqn{\nu(x)}{v(x)}} \item{x}{The input vector covariate vector x} } \references{ Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning, volume 1. Springer, first edition. Kristiansson, E., Sj\eqn{\mbox{\"o}}{o}gren, A., Rudemo, M., Nerman, O. (2005). Weighted Analysis of Paired Microarray Experiments. Statistical Applications in Genetics and Molecular Biology 4(1) \eqn{\mbox{\AA}}{A}strand, M. et al. (2007a). Improved covariance matrix estimators for weighted analysis of microarray data. Journal of Computational Biology, Accepted. \eqn{\mbox{\AA}}{A}strand, M. et al. (2007b). Empirical Bayes models for multiple-probe type arrays at the probe level. Bioinformatics, Submitted 1 October 2007. } \author{Magnus \eqn{\mbox{\AA}}{A}strand} \seealso{plw, lmw} \keyword{htest} \keyword{models}