\name{plgem.deg} \alias{plgem.deg} \title{ Selection of Differentially Expressed Genes/Proteins With PLGEM } \description{ This function selects differentially expressed genes/proteins (DEG) at a given significance level, based on observed \bold{PLGEM} signal-to-noise ratio (STN) values (typically obtained via a call to \code{\link{plgem.obsStn}}) and pre-computed p-values (typically obtained via a call to \code{\link{plgem.pValue}}). } \usage{ plgem.deg(observedStn, plgemPval, delta=0.001, verbose=FALSE) } \arguments{ \item{observedStn}{\code{list} containing a \code{matrix} of observed PLGEM-STN values; output of function \code{\link{plgem.obsStn}}.} \item{plgemPval}{\code{matrix} of p-values; output of function \code{\link{plgem.pValue}}.} \item{delta}{numeric vector; the significance level(s) to be used for the selection of DEG; value(s) must be between 0 and 1 (excluded).} \item{verbose}{\code{logical}; if \code{TRUE}, comments are printed out while running.} } \details{ This function allows for the selection of DEG by setting a significance cut-off on pre-calculated p-values. The significance level \code{delta} roughly represents the false positive rate of the DEG selection, e.g. if a \code{delta} of 0.001 is chosen in a microarray dataset with 10,000 genes (none of which is truly differentially expressed), on average 10 genes/proteins are expected to be selected by chance alone. } \value{ A \code{list} of four elements: \item{fit}{the input \code{plgemFit}.} \item{PLGEM.STN}{the input \code{matrix} of observed PLGEM-STN values (see \code{\link{plgem.obsStn}} for details).} \item{p-value}{the input \code{matrix} of p-values (see \code{\link{plgem.pValue}} for details).} \item{significant}{a \code{list} with a number of elements equal to the number of different significance levels (\code{delta}) used as input. Each element of this list is again a list, whose number of elements correspond to the number of performed comparisons (i.e. the number of conditions in the starting \code{ExpressionSet} minus the baseline). Each of these second level elements is a \code{character} vector of significant gene/protein names that passed the statistical test at the corresponding significance level.} } \references{ Pavelka N, Pelizzola M, Vizzardelli C, Capozzoli M, Splendiani A, Granucci F, Ricciardi-Castagnoli P. A power law global error model for the identification of differentially expressed genes in microarray data. BMC Bioinformatics. 2004 Dec 17; 5:203; \url{http://www.biomedcentral.com/1471-2105/5/203}. Pavelka N, Fournier ML, Swanson SK, Pelizzola M, Ricciardi-Castagnoli P, Florens L, Washburn MP. Statistical similarities between transcriptomics and quantitative shotgun proteomics data. Mol Cell Proteomics. 2008 Apr; 7(4):631-44; \url{http://www.mcponline.org/cgi/content/abstract/7/4/631}. } \author{ Mattia Pelizzola \email{mattia.pelizzola@gmail.com} Norman Pavelka \email{normanpavelka@gmail.com} } \seealso{ \code{\link{plgem.fit}}, \code{\link{plgem.obsStn}}, \code{\link{plgem.resampledStn}}, \code{\link{plgem.pValue}}, \code{\link{run.plgem}} } \examples{ data(LPSeset) LPSfit <- plgem.fit(data=LPSeset, fittingEval=FALSE) LPSobsStn <- plgem.obsStn(data=LPSeset, plgemFit=LPSfit) set.seed(123) LPSresampledStn <- plgem.resampledStn(data=LPSeset, plgemFit=LPSfit) LPSpValues <- plgem.pValue(LPSobsStn, LPSresampledStn) LPSdegList <- plgem.deg(observedStn=LPSobsStn, plgemPval=LPSpValues, delta=0.001) } \keyword{models}