\name{rowFtests} \alias{rowFtests} \alias{rowFtests,matrix,factor-method} \alias{rowFtests,ExpressionSet,factor-method} \alias{rowFtests,ExpressionSet,character-method} \alias{colFtests} \alias{colFtests,matrix,factor-method} \alias{colFtests,ExpressionSet,factor-method} \alias{colFtests,ExpressionSet,character-method} \alias{rowttests} \alias{rowttests,matrix,factor-method} \alias{rowttests,matrix,missing-method} \alias{rowttests,ExpressionSet,factor-method} \alias{rowttests,ExpressionSet,character-method} \alias{rowttests,ExpressionSet,missing-method} \alias{colttests} \alias{colttests,matrix,factor-method} \alias{colttests,matrix,missing-method} \alias{colttests,ExpressionSet,factor-method} \alias{colttests,ExpressionSet,character-method} \alias{colttests,ExpressionSet,missing-method} \alias{fastT} \title{t-tests and F-tests for rows or columns of a matrix} \description{t-tests and F-tests for rows or columns of a matrix, intended to be speed efficient.} \usage{ rowttests(x, fac, tstatOnly = FALSE) colttests(x, fac, tstatOnly = FALSE) fastT(x, ig1, ig2, var.equal = TRUE) rowFtests(x, fac, var.equal = TRUE) colFtests(x, fac, var.equal = TRUE) } \arguments{ \item{x}{Numeric matrix. The matrix must not contain \code{NA} values. For \code{rowttests} and \code{colttests}, \code{x} can also be an \code{\link[Biobase:class.ExpressionSet]{ExpressionSet}}.} \item{fac}{Factor which codes the grouping to be tested. There must be 1 or 2 groups for the t-tests (corresponding to one- and two-sample t-test), and 2 or more for the F-tests. If \code{fac} is missing, this is taken as a one-group test (i.e. is only allowed for the t-tests). The length of the factor needs to correspond to the sample size: for the \code{row*} functions, the length of the factor must be the same as the number of columns of \code{x}, for the \code{col*} functions, it must be the same as the number of rows of \code{x}. If \code{x} is an \code{\link[Biobase:class.ExpressionSet]{ExpressionSet}}, then \code{fac} may also be a character vector of length 1 with the name of a covariate in \code{x}.} \item{tstatOnly}{A logical variable indicating whether to calculate p-values from the t-distribution with appropriate degrees of freedom. If \code{TRUE}, just the t-statistics are returned. This can be considerably faster.} \item{ig1}{The indices of the columns of \code{x} that correspond to group 1.} \item{ig2}{The indices of the columns of \code{x} that correspond to group 2.} \item{var.equal}{A logical variable indicating whether to treat the variances in the samples as equal. If 'TRUE', a simple F test for the equality of means in a one-way analysis of variance is performed. If 'FALSE', an approximate method of Welch (1951) is used, which generalizes the commonly known 2-sample Welch test to the case of arbitrarily many samples.} } \details{ If \code{fac} is specified, \code{rowttests} performs for each row of \code{x} a two-sided, two-class t-test with equal variances. \code{fac} must be a factor of length \code{ncol(x)} with two levels, corresponding to the two groups. The sign of the resulting t-statistic corresponds to "group 1 minus group 2". If \code{fac} is missing, \code{rowttests} performs for each row of \code{x} a two-sided one-class t-test against the null hypothesis 'mean=0'. \code{rowttests} and \code{colttests} are implemented in C and should be reasonably fast and memory-efficient. \code{fastT} is an alternative implementation, in Fortran, possibly useful for certain legacy code. \code{rowFtests} and \code{colFtests} are currently implemented using matrix algebra in R. Compared to the \code{rowttests} and \code{colttests} functions, they are slower and use more memory. } \value{ A \code{data.frame} with columns \code{statistic}, \code{p.value} (optional in the case of the t-test functions) and \code{dm}, the difference of the group means (only in the case of the t-test functions). The \code{row.names} of the data.frame are taken from the corresponding dimension names of \code{x}. The degrees of freedom are provided in the attribute \code{df}. For the F-tests, if \code{var.equal} is 'FALSE', \code{nrow(x)+1} degree of freedoms are given, the first one is the first degree of freedom (it is the same for each row) and the other ones are the second degree of freedom (one for each row). } \references{B. L. Welch (1951), On the comparison of several mean values: an alternative approach. Biometrika, *38*, 330-336} \author{Wolfgang Huber } \seealso{\code{\link[multtest:mt.teststat]{mt.teststat}}} \examples{ ## ## example data ## x = matrix(runif(40), nrow=4, ncol=10) f2 = factor(floor(runif(ncol(x))*2)) f4 = factor(floor(runif(ncol(x))*4)) ## ## one- and two group row t-test; 4-group F-test ## r1 = rowttests(x) r2 = rowttests(x, f2) r4 = rowFtests(x, f4) ## approximate equality about.equal = function(x,y,tol=1e-10) stopifnot(is.numeric(x), is.numeric(y), length(x)==length(y), all(abs(x-y) < tol)) ## ## compare with the implementation in t.test ## for (j in 1:nrow(x)) { s1 = t.test(x[j,]) about.equal(s1$statistic, r1$statistic[j]) about.equal(s1$p.value, r1$p.value[j]) s2 = t.test(x[j,] ~ f2, var.equal=TRUE) about.equal(s2$statistic, r2$statistic[j]) about.equal(s2$p.value, r2$p.value[j]) dm = -diff(tapply(x[j,], f2, mean)) about.equal(dm, r2$dm[j]) s4 = summary(lm(x[j,] ~ f4)) about.equal(s4$fstatistic["value"], r4$statistic[j]) } ## ## colttests ## c2 = colttests(t(x), f2) stopifnot(identical(r2, c2)) ## ## missing values ## f2n = f2 f2n[sample(length(f2n), 3)] = NA r2n = rowttests(x, f2n) for(j in 1:nrow(x)) { s2n = t.test(x[j,] ~ f2n, var.equal=TRUE) about.equal(s2n$statistic, r2n$statistic[j]) about.equal(s2n$p.value, r2n$p.value[j]) } ## ## larger sample size ## x = matrix(runif(1000000), nrow=4, ncol=250000) f2 = factor(floor(runif(ncol(x))*2)) r2 = rowttests(x, f2) for (j in 1:nrow(x)) { s2 = t.test(x[j,] ~ f2, var.equal=TRUE) about.equal(s2$statistic, r2$statistic[j]) about.equal(s2$p.value, r2$p.value[j]) } } \keyword{math}