\name{Bscore} \alias{Bscore} %\alias{Bscore,cellHTS-method} \concept{B score method} \concept{normalization} \title{B score normalization} \description{ Correction of plate and spatial effects of data stored in slot \code{assayData} of a \code{\linkS4class{cellHTS}} object using the B score method (without variance adjustment of the residuals). Using this method, a two-way median polish is fitted, on a per-plate basis, to account for row and column effects. } \usage{ Bscore(object, save.model = FALSE) } \arguments{ \item{object}{a \code{\linkS4class{cellHTS}} object that has already been configured. See details.} \item{save.model}{a logical value specifying whether the per-plate models should be stored in slots \code{rowcol.effects} and \code{overal.effects}. See details.} } \details{ This function is usually not called directly by the user, but from within the \code{\link[cellHTS2:normalizePlates]{normalizePlates}} function. The normalization is performed in a per-plate fashion using the B score method, for each replicate and channel. In the B score method, the residual \eqn{r_{ijp}} of the measurement for row \emph{i} and column \emph{j} on the \emph{p}-th plate is obtained by fitting a \link[stats:medpolish]{two-way median polish}, in order to account for both row and column effects within the plate: \deqn{ r_{ijp} = y_{ijp} - \hat{y}_{ijp} = y_{ijp} - (\hat{\mu}_p + \hat{R}_{ip} + \hat{C}_{jp})}{% r_{ijp} = y_{ijp} - yest_{ijp} = y_{ijp} - (mu_p + R_{ip} + C_{jp})} \eqn{y_{ijp}} is the measurement value in row \emph{i} and column \emph{j} of plate \emph{p} (taken from slot \code{assayData} - only sample wells are considered), and \eqn{\hat{y}_{ipj}}{yest_{ijp}} is the corresponding fitted value. This is defined as the sum between the estimated average of the plate (\eqn{\hat{\mu}_p}{mu_p}), the estimated systematic offset for row \emph{i} (\eqn{\hat{R}_{ip}}{R_{ip}}), and the systematic offset for column \emph{j} (\eqn{\hat{C}_{jp}}{C_{jp}}). \emph{NOTE:} In the original B score method, as presented by Malo et al., a further step is performed: for each plate \emph{p}, each of the obtained residual values \eqn{r_{ijp}}'s are divided by the median absolute deviation of the residuals in plate \emph{p} (\eqn{MAD_p}{MAD_p}), resulting in: \deqn{\frac{r_{ijp}}{MAD_p}}{r_{ijp}/MAD_p} The intention of such a further adjustment is to compensate for plate-to-plate variability in dynamic range. In the \code{Bscore} function, this step is not automatically performed, but can be done if B score normalization is called using the function \code{\link[cellHTS2:normalizePlates]{normalizePlates}} with arguments \code{method="Bscore"} and \code{varianceAdjust="byPlate"}. See the latter function for more details. If \code{save.model=TRUE}, the models row and column offsets and overall offsets are stored in the slots \code{rowcol.effects} and \code{overall.effects} of \code{object}. } \value{ An object of class \code{\linkS4class{cellHTS}} with B-score normalized data stored in slot \code{assayData}. Furthermore, if \code{save.model=TRUE}, the row and column effects and the overall effects are stored in slots \code{rowcol.effects} and \code{overall.effects} , respectively. The latter slots are arrays with the same dimension as \code{Data(object)}, except the \code{overall.effects} slot, which has dimensions \code{nr Plates x nr Samples x nr Channels}. After calling this function, the processing status of the \code{\linkS4class{cellHTS}} object is updated in the slot \code{state} to \code{object@state["normalized"]=TRUE}. } \author{Ligia Bras \email{ligia@ebi.ac.uk}} \seealso{ \code{\link[stats:medpolish]{medpolish}}, \code{\link[stats:loess]{loess}}, \code{\link[locfit:locfit.robust]{locfit.robust}}, \code{\link[cellHTS2:plotSpatialEffects]{plotSpatialEffects}}, \code{\link[cellHTS2:normalizePlates]{normalizePlates}}, \code{\link[cellHTS2:summarizeChannels]{summarizeChannels}} \code{\link[cellHTS2:plateEffects]{plateEffects}} } \references{ Brideau, C., Gunter, B., Pikounis, B. and Liaw, A. (2003) Improved statistical methods for hit selection in high-throughput screening, \emph{J. Biomol. Screen} \bold{8}, 634--647. Malo, N., Hanley, J.A., Cerquozzi, S., Pelletier, J. and Nadon, R. (2006) Statistical practice in high-throughput screening data analysis, \emph{Nature Biotechn} \bold{24}(2), 167--175. Boutros, M., Br\'as, L.P. and Huber, W. (2006) Analysis of cell-based RNAi screens, \emph{Genome Biology} \bold{7}, R66. } \examples{ data("KcViabSmall") xb <- Bscore(KcViabSmall, save.model = TRUE) ## Calling Bscore function from "normalizePlates" and adding the per-plate variance adjustment step: xopt <- normalizePlates(KcViabSmall, method="Bscore", varianceAdjust="byPlate", save.model = TRUE) ## Access the slots overall.effects and rowcol.effects ef1 = plateEffects(xb) ef2 = plateEffects(xopt) ## double-check stopifnot( all(xb@rowcol.effects==xopt@rowcol.effects, na.rm=TRUE), all(xb@overall.effects==xopt@overall.effects, na.rm=TRUE), identical(ef1, ef2) ) } \keyword{manip}