\name{RmiRtc} \alias{RmiRtc} \alias{readRmiRtc} \alias{miRtcList-class} \title{Time Course relationship between microRNA and Genes} \description{ Given a timeline of experiments resulting from \code{RmiR} or \code{read.mir}, it calculates the correlation between the trend of miRNA and corresponding gene targets. } \usage{ RmiRtc(timeline = NULL, timevalue = NULL, method = "pearson") readRmiRtc(miRtcObj, correlation = -0.75, exprLev = 1, annotation= NULL, fileName = "miRNA_for_genes") } \arguments{ \item{timeline}{A vector with the names of the experiments resulting from \code{RmiR} or \code{read.mir}, in chronological order.} \item{timevalue}{A vector of numbers with the unity of time correspondig to \code{timeline}.} \item{method}{Method to use to calculate the correlation between miRNA and gene expression, default is "pearson". For other see \code{cor} from \code{stats} package.} \item{miRtcObj}{An object resulting from \code{RmiRtc}.} \item{annotation}{The annotation package to retrive the corresponding symbol given the \code{gene_id} . eg: Agilent 44k annotation="hgug4112a.db" or annotation="org.Hs.eg.db".} \item{correlation}{The correlation level desired to filter the \code{miRtcList} object created with the \code{RmiRtc} function.} \item{exprLev}{The absolute value of gene expression as cut-off to filter the \code{miRtcList} object created with the \code{RmiRtc} function.} \item{fileName}{The file name to print the file with the gene targets with the number of miRNAs matching the \code{correlation} criteria. If nothing is specified, no file will be created.} } \details{ \code{RmiRtc} creates an \code{miRtcList} wich includes all the information of the time course experiment: couples of miRNA and gene target, expression of gene and miRNA in the time, the correlation between the miRNA and the gene expression trends. \code{readRmiRtc} subsets the \code{miRtcList} created with \code{RmiRtc}. We can select a correlation level, if positive we select the correlated genes and miRNas, if negative the anti-correlated couples. Also we can decrease the data by setting a log ratio cut off for the gene expression, to select only the case which the a gene is op or down regulated. } \value{ \item{couples}{The couples of \code{mature_miRNA} and targets in entrez gene annotation.} \item{mirExpr}{A matrix with the expression of miRNA in order by \code{timeline}.} \item{geneExpr}{A matrix with the expression of miRNA in order by \code{timeline}.} \item{mirCV}{A matrix with the coefficents of variation of the miRNAs from \code{RmiR} or \code{read.mir}.} \item{geneCV}{A matrix with the coefficents of variation of the genes resulting from \code{RmiR} or \code{read.mir}.} \item{correlation}{A vector with the correlation value between miRNAs and gene targets.} \item{reps}{With \code{readRmiRtc} we list all the gene targets ordered by the number of miRNAs matching the correlation criteria.} } \seealso{ \code{RmiR}, \code{read.mir}, \code{plotRmiRtc} } \examples{ ##An example without the data data(RmiR) res1 <- read.mir(genes=gene1, mirna=mir1, annotation="hgug4112a.db") res2 <- read.mir(genes=gene2, mirna=mir2, annotation="hgug4112a.db") res3 <- read.mir(genes=gene3, mirna=mir3, annotation="hgug4112a.db") res_tc <- RmiRtc(timeline=c("res1", "res2", "res3"), timevalue=c(12,48,72)) res <- readRmiRtc(res_tc, correlation=-0.9, exprLev=1, annotation="hgug4112a.db") res$reps }