\name{LBE} \alias{LBE} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Estimation of the false discovery rate. } \description{ LBE is an efficient procedure for estimating the proportion of true null hypotheses, the false discovery rate and the q-values. } \usage{ LBE(pval, a = NA, l = 0.05, ci.level = 0.95, qvalues = TRUE, plot.type = "main", FDR.level = 0.05, n.significant = NA) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{pval}{ Numerical vector of p-values (only necessary input). } \item{a}{ Real value used in \eqn{[-ln (1-pi)]^a} (see details). If a == NA (default), then the value of a is automatically calculated as the greatest value such that the upper bound of the asymptotic standard deviation of the estimator of pi0 is smaller than the threshold l. If \eqn{a >= 1}, the value of a is used in \eqn{[-ln (1-pi)]^a} (see details). If \eqn{a < 1}, the identity function is used for transforming the p-values. } \item{l}{ Threshold for the upper bound of the asymptotic standard deviation (only used if a == NA). } \item{ci.level}{ Level for the confidence interval of pi0. } \item{qvalues}{ Logical value for estimating the qvalues and the FDR. If qvalues = FALSE, only the proportion pi0 of true null hypotheses is estimated. } \item{plot.type}{ If plot.type = "none", no graphic is displayed. If plot.type = "main", the estimated q-values versus the p-values are plotted together with the histogram of the p-values. If plot.type = "multiple", several graphics are displayed: 1. The histogram of the p-values 2. The estimated q-values versus the p-values 3. The number of significant tests versus each qvalue cutoff 4. The number of expected false positives versus the number of significant tests. } \item{FDR.level}{ Level at which to control the FDR (only used if n.significant == NA). } \item{n.significant}{ If specified, the FDR is estimated for the rejection region defined by the "n.significant" smallest p-values. } } \details{ The procedure LBE is based on the expectation of a particular transformation of the p-values leading to a straightforward estimation of the key quantity pi0 that is the proportion of true null hypotheses: \eqn{pi0(a)=\{(1/m)*\sum_{i=1}^m[-\ln(1-pi)]^a\}/\Gamma(a+1),} where a belongs to the interval \eqn{[1;inf)}. } \value{ A list containing: \item{ call }{Function call.} \item{ FDR }{Level at which to control the FDR (if n.significant == NA) or estimated FDR (if n.significant != NA).} \item{ pi0 }{Estimated value of pi0, the proportion of true null hypotheses.} \item{ pi0.ci }{Confidence interval for pi0.} \item{ ci.level }{Level for the confidence interval of pi0.} \item{ a }{Value used in \eqn{[-\ln (1-pi)]^a} (see details).} \item{ l }{Upper bound of the asymptotic standard deviation for pi0.} \item{ qvalues }{Vector of the estimated q-values.} \item{ pvalues }{Vector of the original p-values.} \item{ significant }{Indicator of wether the null hypothesis is rejected.} \item{ n.significant }{Number of rejected null hypotheses.} } \references{ Dalmasso C, Broet P, Moreau T (2005). A simple procedure for estimating the false discovery rate. Bioinformatics. Bioinformatics, 21: 660 - 668. Storey JD and Tibshirani R. (2003). Statistical significance for genome-wide studies. Proc Natl Acad Sci, 100, 9440-9445. } \author{ Cyril Dalmasso } \note{ LBE is an alternative method to the one proposed by Storey and Tibshirani (2003) for estimating the q-values, this latter method being implemented in the package \code{qvalue}. } \seealso{ \code{\link{LBEplot}}, \code{\link{LBEsummary}}, \code{\link{LBEwrite}}, \code{\link{LBEa}} } \examples{ ## start data(hedenfalk.pval) res=LBE(hedenfalk.pval) data(golub.pval) res=LBE(golub.pval) ## end } \keyword{ htest }