Segmentation demo

Wolfgang Huber

September 25, 2006

Contents
1 Introduction 1
2 Normalization of the data 1

3 Segmentation

3.1 Selecting the probes in along-chromosome order

3.1.1 Avoid oversampling
3.2 Call the segmentation algorithm
3.3 Calculate confidence intervals
3.4 Model selection.o
3.5 Size of the confidence intervals as a functionof S
3.6 Definition of segFun Lo Lo
3.7 Using the plotAlongChrom function for more elaborate displays.

0O UL UtwwNdN

1 Introduction

This script presents a demo of the segmentation function on the davidTiling data.
First we load the package tilingArray, which contains the algorithms, and the package
davidTiling, which contains the data and the array annotation.

> library("tilingArray")
> library("davidTiling")
> data("davidTiling")

> data("probednno")

2 Normalization of the data

Please see the vignette Assessing signal/noise ratio before and after normalization (assessNorm.Rnw)
for an explanation of the following code.

> nc = as.integer(2560)

> PMind = rep(seq(as.integer(1), nc - as.integer(3), by = as.integer(2)),
+ each = nc) * nc + (1:nc)

> MMind = PMind + nc

> ispm = rep(FALSE, nc * nc)

> ispm[PMind] = TRUE

> isbg = (probeAnno$probeReverse$no_feature == "no" & probeAnno$probeDirect$no_feature ==
+ "no" & ispm)

> isRNA = davidTiling$nucleicAcid %inj, c("poly(A) RNA", "total RNA")

> isDNA = davidTiling$nucleicAcid Jinj, "genomic DNA"

> stopifnot(sum(isRNA) == 5, sum(isDNA) == 3)

> xn = normalizeByReference(davidTiling[, isRNA], davidTiling[,

+ isDNA], pm = PMind, background = isbg)

> pData(xn) [, 2, drop = FALSE]

nucleicAcid
05_04_27_2xpolyA_NAP3.cel poly(A) RNA
05_04_26_2xpolyA_NAP2.cel poly(A) RNA

05_04_20_2xpolyA_NAP_2tol.cel poly(A) RNA
050409_totcDNA_14ug_nob2.cel total RNA
030505_totcDNA_15ug_affy.cel total RNA

3 Segmentation

3.1 Selecting the probes in along-chromosome order

Extract for all probes that map to the "+” strand of chromosome 1 their start and end
coordinate, and their index in the exprs(davidTiling) data matrix. Sort them by midpoint.

chrstrd = "1.+"

what = c("start", "end", "index", "unique")

prbs = do.call("data.frame", mget(paste(chrstrd, what, sep = "."),
probeAnno))

colnames (prbs) = what
prbs$mid = (prbs$start + prbs$end)/2
prbs = prbs[order (prbs$mid),]

V V.V + Vv Vv V

Throw out the missing (NA) values.

> numna = rowSums (is.na(exprs(xn) [prbs$ind, 1))
> stopifnot(all(numna Jinj, ¢(0, ncol(xn))))
> prbs = prbs[numna == 0,]

3.1.1 Avoid oversampling

Figure 1 shows that the spacing between the probes is not completely regular, in particular,
repetitive regions are highly oversampled. We subsample the probes, the result of this is
shown in the comparison between Figures 1b and 1c.

> sprb = prbs[sampleStep(prbs$mid, step = 7),]

> par(mfrow = c(3, 1))

> hist(prbs$mid, col = "mistyrose", 100, main = "(a)")
> barplot(table(diff (prbs$mid)), main = "(b)")

> barplot(table(diff (sprb$mid)), main = "(c)")

3.2 Call the segmentation algorithm

The segmentation algorithm needs two parameters, maxseg, the maximum number of seg-
ments that the algorithm is going to consider, and maxk, the maximum length of individual
segments. We choose maxseg to be quite high, such that it corresponds to an average
length per segment of 750 bases. The algorithm will calculate all optimal segmentations
with 1,2,..., maxseg segments, and we can still later choose our prefered one. Note that
maxk is measured in number of data points, not in genomic coordinates. Our choice of the
parameter maxk corresponds to a maximum segment length of about 7.5 x 3,000 = 22, 500
bases. Note that there is no minimum length restriction for the segments.

> maxseg = round (sprb$end [nrow(sprb)]/750)
[1] 307

> y = exprs(xn) [sprbind, xnnucleicAcid == "poly(A) RNA", drop = FALSE]
> segw = segment(y, maxseg = maxseg, maxk = 3000)

We also add additional information to the object that was not used for the actual segmen-
tation, but will be useful for the visualization: into the slot x, the z-coordinates of the
probes, and into the slot flag, the uniqueness status of the probes (0 iff the probe has
exactly one match in the genome):

> segw@x = sprb$mid
> segw@flag = sprb$unique

Having to access the x and flag slots directly, as in the code above, is a bit unelegant. 1
intend to provide accessor functions in subsequent versions of the package.

(@

6000

Frequency

0 2000

0 50000 100000 150000 200000

prbs$mid

(b)

20000

0 10000
C—1
o

0

0

0

0

0

0O 2 4 6 8 10 12 14 16 19 22 24 26 30 32 40 48 56 96

©

10000 20000

0
0

Figure 1: (a): Histogram of probe midpoints along the “+” strand of chromosome 1. There
are some probe dense regions in particular around 160,000. The sequence of that region is
repeated multiple times in the genome, and due to the way the chip was designed, there
are also a lot of probes (more than necessary) for that region. (b): histogram of differences
between probe midpoints (prbs$mid). The intention of the chip design was to have a
regular spacing of 8 bases. In some cases, the spacing is wider, probably due to updates
in the genome sequence between when the chip was designed and when probes were re-
aligned. In many cases, it is tighter with multiple probes for the same target sequence, or
only 1 or 2 bases offset. This occurs in the regions of duplicated sequence. (c): histogram
of differences between probe midpoints after sampling (sprb$mid)

3.3 Calculate confidence intervals

This is simply a call to the confint method of the segmentation class.

> nseg = round(sprb$end [nrow(sprb)]/1500)
> confintLevel = 0.95
> segwi = confint(segw, parm = nseg, level = confintLevel)

Now we are ready to have a look at the result via the plot method of the segmentation
class. The plot is shown in Figure 2.

> plot(segwi, nseg, pch = ".", x1im = c(0, 40000))

Note: slot ’y’ has more than one column, calculating ’rowMeans’

y
-2
|

-4
|

-6

0 10000 20000 30000 40000

Figure 2: Segmentation with confidence intervals.

3.4 Model selection.
The log-likelihood is

10gL:—g <log27r+1+logm>, (1)
n
where r; the i-th residual and n the number of data points. AIC and BIC are defined as
AIC = —2logL+2p (2)
BIC = —2logL + plogn (3)

where p is the number of parameters of the model. In our case, p = 25, since for a
segmentation with S segments, we estimate S — 1 changepoints, S mean values, and 1
standard deviation. We can also consider the penalized likelihoods

log Laic = logL—p (4)
log Lgic = logL — glogn (5)

We plot them as functions of S, see Figure 3

> par(mai = c(1, 1, 0.1, 0.01))
> tilingArray:::plotPenLL (segwi, extrabar = c(black = round(segwi@x[length(segwi@x)]/1500))
+ type = "1", 1lwd = 2)

—e— logL |
- |—*— log Lac !
*— log Lgcc !
1
8 |
B8 o |
o [T9)
£ P
©
=
> _
o
Sy
s 8
N o _|
= &
s 7
@
o
Z
o
S
S _|
15
i

Figure 3: Model selection: log-likelihood and two versions of penalized log-likelihood (AIC
and BIC) as a function of the number of segments S. Vertical dashed green bar corresponds
to optimal log Lpic, vertical dashed grey bar to our “subjective” choice of average segment
length 1,500 bases.

3.5 Size of the confidence intervals as a function of S

> segwj = confint(segw, parm = as.integer(c(112, 153, 194, 235,
+ 276)), level = confintLevel)
> nBp = which(segwj@hasConfint)

> confintwidths = lapply(segwj@breakpoints[nBp], function(m) (m[,

+ 3] - m[, 11))

> maxx = 20

> colors = brewer.pal(length(nBp), "Seti1")

> multiecdf (confintwidths, xlim = c¢(0, maxx), main = "distribution of lengths of confidence
+ verticals = TRUE, lwd = 2, col = colors)

> legend(x = 0.6 * maxx, y = 0.5, legend = paste("S =", nBp), col = colors,

+ Ity = 1, lwd = 2)

distribution of lengths of confidence intervals

<
—

Fn(x)
0.4 0.6
| |
|
[
[

S=112
S=153
S=19%
~ S=235
°© J S=276
o
e
I I I I I
0 5 10 15 20

Figure 4: Size of the confidence intervals as a function of S. Cumulative distribution
functions (CDFs) for the distributions of confidence interval widths for S =112, 153, 194,
235, 276. For larger S, the confidence intervals are wider.

3.6 Definition of segFun

For the subsequent considerations, it will be useful to define the function segFun. It encapsu-
lates the complete set of segmentation computations, as shown above, for one chromosome
strand. Its result is a segmentation object with confidence intervals.

> segFun = function(chrstrd, nrBasesPerSegment = 1500) {
+ writeLines (sprintf ("Working on Js", chrstrd), con = "segmentation.log")
+ what = c("start", "end", "index", "unique")

prbs = do.call("data.frame", mget(paste(chrstrd, what, sep = "."),
probeAnno))

colnames (prbs) = what

prbs$mid = (prbs$start + prbs$end)/2

prbs = prbs[order (prbs$mid),]

numna = rowSums (is.na(exprs(xn) [prbs$ind,]))

stopifnot(all(numna 7%inj, c(0, ncol(xn))))

prbs = prbs[numna == 0,]

sprb = prbs[sampleStep(prbs$mid, step = 7),]

nseg = round(sprb$end[nrow(sprb)]/nrBasesPerSegment)

y = exprs(xn) [sprbind, xnnucleicAcid == "poly(A) RNA",
drop = FALSE]

s = segment(y, maxseg = nseg, maxk = 3000)

s@x = sprb$mid

s@flag = sprb$unique

confint (s, parm = nseg, level = confintLevel)

+ + + + + + + ++ +F+++ o+ + o+

}

3.7 Using the plotAlongChrom function for more elaborate displays.

Since the data in the davidTiling package are strand-specific, we can do the segmentation
for the “-” strand as well and produce the along-chromosome plot shown in Figure 5.

For Figure 5, we call segFun on the “-” strand of chromosome 1. For Figures 6 and 7,
we also call it on a number of other chromosomes.

This computation will take a couple of hours (about 18h on mine). Note that the
for—loop below can be trivially parallelized since the computations for different chromo-
some strands are independent of each other. A simple synchronization mechanism through
creation of a lock file is already provided in the code example below.

toDo = c("1.=", M2 4N, M2 =M WE U MGt ug qu_ ng _n_ w13 4n
N3N, M14.+N, W14, =", W15 4", 15 -

for (w in toDo) {
fn = paste(w, "rda", sep = ".")

if (!file.exists(fn)) {
writeLines(date(), con = fn)
assign(w, segFun(w))
save(list = w, file = fn, compress = TRUE)

+ + + + 4+ + + VvV + Vv

-

Finally, we collect all results in the environment seg0Obj.

vV vV + 4+ + V VvV

"-"), sep="."), where chr is the chromosome identifier.

segObj = new.env(parent = baseenv())
assign("1.+", segwi, segObj)
for (w in toDo) {
load(paste(w, "rda", sep = "."))
assign(w, get(w), segObj)

}
data("gff")
myGff = gff[gff$Name != "tR(UCU)E",]

ylim = quantile(exprs(xn)[, 1:3], probs

= ¢(0.001, 0.999), na.rm = TRUE)

The function plotAlongChrom accepts an environment as its first argument, which is
expected to contain objects of class segmentation with names given by paste(chr, c("+",

Chr1

In the following, the code to

90900 110000

-4
-6 . X
A2 p
nnnnn o0 sop0 o900

¥
(ALOBEC-A
YALgsBC- lacs1|

Figure 5: Along-chromosome plot similar to Figure 1 in [1].

generate Figure 1 in [1].

>

> plotAlongChrom(seg0Obj =

+
+
+

grid.newpage ()

segObj, chr =

1, coord = c(30, 130) *

1000, ylim = ylim, gff = myGff, showConfidencelntervals = FALSE,

featureNoLabel =
doLegend = FALSE, main = "")

c("uORF", "binding site", "TF_binding site"),

In the following, the code to generate Figure 2 in [1].

> myPlot = function(row, col,

+
+

o) q

pushViewport (viewport (layout.pos.row
-0.1, width = 1.15, y = 0, height =

grid.rect(x =

col))
1.02, just = c("left",

= row, layout.pos.col =

!

551000

a Chr13

YMRE4IW-A

552000 553000

Chr5

140000

YELOO§W
141000

c . Chr 15

785000 786000 787000 788000 789000 790000

viLIssiv NL152

343000 344000 345000 346000 347000

w

ZgDDO 323000 324000 325000 326000

uTP?

361000 362000 363000 364000 365000

ORC2

221000 222000 223000 224000 225000 226000

(o] [som |

SO i
' ' 0 o '
2
4
6
e Chr5 Chr 2 g Chr9
2 [—Jcos
0 []cDS dubious
r2 UORF
g 4 [neRNA
b -6

TF binding site
. Watson strand probe
. Crick strand probe
Non-unique probe
| Segment boundary

Along-chromosome plots similar to Figure 2 in [1].

a Cl

YMRL4IW-A

551000

i]

552000 553000

ABP140

MET7

785000 786000 787000 788000 789000 790000

c Chr9

221000 222000 223000 224000 225000 226000

[Jeos
I:l CDS dubious

TF binding site
® Watson strand probe

@ Crick strand probe

[Tseraz | ||

SPO22

Non-unique probe

]

Segment boundary

Figure 7: Along-chromosome plots similar to Figure 2 in [2].

10

VVV++VVVYVH+ A+ +++++++++++++++++++++++V+E++++ o+

}

"bottom"), default.units = "npc", gp = gpar(lwd = 0.2))
plotAlongChrom(..., segObj = segObj, ylim = ylim, gff = myGff,
featureNoLabel = c("binding_site", "TF_binding_site"),

doLegend = FALSE)
popViewport ()

myLegend = function(row, col, what) {

}

dx
dy

fc = tilingArray:::featureColors (1)

fc = switch(what, fc[c("CDS", "CDS_dubious", "uORF", "ncRNA",
"TF_binding site"),], fc[c("CDS", "CDS_dubious", "TF_binding site"),
iy

pc = c("Watson strand probe" = "#00441b", "Crick strand probe" = "#081d58",
"Non-unique probe" = "grey")

sc = c("Segment boundary" = "#777777")

pushViewport (dataViewport (xscale = c(0, 1), yscale = c(-7,
nrow(fc) + 1), layout.pos.col = col, layout.pos.row = row))

h1 = nrow(fc):1
h2 = 0:(1 - length(pc))
h3 = -length(pc)
w=0.2
grid.rect(x = 0, width = w, y = hl, height = unit(1, "native") -
unit (2, "mm"), just = c("left", "center"), default.units = "native",

gp = do.call("gpar", fc))

grid.circle(x = w/2, y = h2, r = 0.2, default.units = "native",
gp = gpar(col = pc, fill = pc))

grid.lines(x = w/2, y = h3 + ¢(-0.3, +0.3), default.units = "native",
gp = gpar(col = sc))

grid.text(label = c(gsub("_", " ", rownames(fc)), names(pc),
names(sc)), x =w * 1.1, y = c(hl, h2, h3), just = c("left",
"center"), default.units = "native", gp = gpar(cex = 0.7))

popViewport ()

=0.2
0.05

grid.newpage ()
pushViewport (viewport(x = 0.02, width = 0.96, height = 0.96,

just = c("left", "center"), layout = grid.layout(3, 8, height = c(1,
dy, 1), width = c(dx, 1, dx, 1, dx, 1, dx, 1))))

myPlot(1, 2, chr = 13, coord = c (550044, 553360), main = "a")
myPlot(1, 4, chr = 5, coord = c(138660, 141880), main = "b")
myPlot(1, 6, chr = 15, coord = c (784700, 790000), main = "c")

11

> myPlot(1, 8, chr = 14, coord = c(342200, 347545), main = "d")
> myPlot (3, 2, chr = 5, coord = c(321900, 326100), main = "e")
> myPlot (3, 4, chr = 2, coord = c(360500, 365970), main = "f")
> myPlot (3, 6, chr = 9, coord = c(221000, 226500), main = "g")
> myLegend (3, 8, 1)

> popViewport ()

In the following, the code to generate Figure 2 in [2].

> grid.newpage ()

> pushViewport (viewport(x = 0.02, width = 0.96, height = 0.96,

+ just = c("left", "center"), layout = grid.layout(l, 8, height = c(1),
+ width = ¢(0.05, 1, 0.15, 1, 0.15, 1, 0.15, 0.5))))

> myPlot (1, 2, chr = 13, coord = c(550044, 553360), main = "a")

> myPlot (1, 4, chr = 15, coord = c(784700, 790000), main = "b")

> myPlot(1, 6, chr = 9, coord = c(221000, 226500), main = "c")

> myLegend(1, 8, 2)

> popViewport ()

References

[1] Lior David, Wolfgang Huber, Marina Granovskaia, Joern Toedling, Curtis J. Palm,
Lee Bofkin, Ted Jones, Ronald W. Davis, and Lars M. Steinmetz A high-resolution
map of transcription in the yeast genome. PNAS, 2006. 9, 10

[2] Wolfgang Huber, Joern Toedling and Lars M. Steinmetz Transcript mapping with
oligonucleotide high-density tiling arrays. Bioinformatics, 2006. 10, 12

12

	Introduction
	Normalization of the data
	Segmentation
	Selecting the probes in along-chromosome order
	Avoid oversampling

	Call the segmentation algorithm
	Calculate confidence intervals
	Model selection.
	Size of the confidence intervals as a function of S
	Definition of segFun
	Using the plotAlongChrom function for more elaborate displays.

