
The pcaMethods Package

Wolfram Stacklies and Henning Redestig
Max Planck Institute for Molecular Plant Physiology

Potsdam, Germany
http://bioinformatics.mpimp-golm.mpg.de/

February 25, 2007

Overview

The pcaMethods package provides a set of different PCA implementations, to-
gether with tools for cross validation and visualisation of the results. The meth-
ods basically allow to perform PCA on incomplete data and thus may also be
used for missing value estimation.

When doing PCA one assumes that the data is restricted to a subspace of
lower dimensionality, e.g. correlation patterns between jointly regulated genes.
PCA aims to extract these structures thereby filtering noise out. If only the most
significant loadings (eigenvectors, also referred to as principal components) are
used for projection this can be written as:

X = TPT + V (1)

Where X denotes the observations, T the latent variables or scores, P the
transformation matrix (consisting of the most significant eigenvectors of the
covariance matrix) and V are the residuals.

Missing values may be estimated by projecting the scores back into the
original space.

X̂ = TPT (2)

Optimally, this produces an estimate of the missing data based on the underlying
correlation structure, thereby ignoring noise.

In order to calculate the transformation matrix P one needs to determine
the covariance matrix between variables or alternatively calculate P directly via
SVD. In both cases, this can only be done on complete matrices. However, an
approximation may be obtained by use of different regression methods. The
PCA methods provided in this package implement algorithms to accurately
estimate the PCA solution on incomplete data.

1 PCA algorithms

All methods return a common class called pcaRes as a container for the results.
This guarantees maximum flexibility for the user. A wrapper function called
pca() is provided that receives the desired type of pca as a string.

1

http://bioinformatics.mpimp-golm.mpg.de/


svdPca

This is a wrapper function for R′s standard prcomp function. It delivers the
results as a pcaRes object for compatibility with the rest of the package.

svdImpute

This implements the SVDimpute algorithm as proposed by Troyanskaya et al
[1]. The idea behind the algorithm is to estimate the missing values as a linear
combination of the k most significant eigengenes1. The algorithm works itera-
tively until the change in the estimated solution falls below a certain threshold.
Each step the eigengenes of the current estimate are calculated and used to
determine a new estimate.

An optimal linear combination is found by regressing an incomplete gene
against the k most significant eigengenes. If the value at position j is missing,
the jth value of the eigengenes is not used when determining the regression
coefficients.
SVDimpute seems to be tolerant to relatively high amount of missing data (>
10%).

Probabilistic PCA (ppca)

Probabilistic PCA combines an EM approach for PCA with a probabilistic
model. The EM approach is based on the assumption that the latent variables
as well as the noise are normal distributed.

In standard PCA data which is far from the training set but close to the
principal subspace may have the same reconstruction error, see Figure 1 for
explanation.

PPCA defines a likelihood function such that the likelihood for data far from
the training set is much lower, even if they are close to the principal subspace.
This allows to improve the estimation accuracy.
PPCA is tolerant to amounts of missing values between 10% to 15%. If more
data is missing the algorithm is likely not to converge to a reasonable solution.

The method was implemented after the draft“EM Algorithms for PCA and
Sensible PCA” written by Sam Roweis and after the Matlab ppca script imple-
mented by Jakob Verbeek2.

Please check also the PPCA help file.

Bayesian PCA (bpca)

Similar to probabilistic PCA, Bayesian PCA uses an EM approach together with
a Bayesian model to calculate the likelihood for a reconstructed value.
The algorithm seems to be tolerant to relatively high amounts of missing data
(> 10%). Scores and loadings obtained with Bayesian PCA generally differ from
those obtained with conventional PCA. This is because BPCA was developed
especially for missing value estimation. The algorithm does not force orthog-
onality between loadings. However, the BPCA authors found that including

1The term “eigengenes” denotes the loadings when PCA was applied considering genes as
observations.

2http://lear.inrialpes.fr/~verbeek/

2

http://lear.inrialpes.fr/~verbeek/


−4 −2 0 2 4 6

−
3

−
1

1
2

3
4

●

●

●
●

●
●

●●
●●

●

●

●
● ●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

● ●

●

●

● ●●

●

●●● ●●

●

●

●

●

●

●
●

●

●
●●

●

●
●●

●

●

●

●
●

●

●●

●
●

● ●

●

●

●

●

●

●

● ●

●

●
●●● ● ●

●

●
●

●

●
●

●

●

Figure 1: Normal distributed data with the first loading plotted in black. The
two red points have the same reconstruction error because PCA does not define
a density model. Thus the only measure of how well new data fits the model is
the distance from the principal subspace. Data points far from the bulk of data
but still close to the principal subspace will have a low reconstruction error.

an orthogonality criterion made the predictions worse (private communication).
The authors also state that the difference between “real” and predicted Eigen-
values becomes larger when the number of observation is smaller, because it
reflects the lack of information to accurately determine true loadings from the
limited and noisy data. As a result, weights of factors to predict missing values
are not the same as with conventional PCA, but the missing value estimation
is improved.

BPCA was proposed by Oba et al [3]. The method available in this package
is a port of the bpca Matlab script also provided by the authors3.

Nipals PCA

Nipals (Nonlinear Estimation by Iterative Partial Least Squares) [4] is an algo-
rithm at the root of PLS regression which can execute PCA with missing values
by simply leaving those out from the appropriate inner products. It is tolerant
to small amounts (generally not more than 5%) of missing data.

2 Getting started

Installing the package. To install the package first download the appropriate
file for your platform from the Bioconductor website (http://www.bioconductor.
org/). For Windows, start R and select the Packages menu, then Install

3 http://hawaii.aist-nara.ac.jp/%7Eshige-o/tools/

3

http://www.bioconductor.org/
http://www.bioconductor.org/
http://hawaii.aist-nara.ac.jp/%7Eshige-o/tools/


package from local zip file. Find and highlight the location of the zip file
and click on open.

For Linux/Unix, use the usual command R CMD INSTALL or set the option
CRAN to your nearest mirror site and use the command install.packages from
within an R session.

Loading the package: To load the pcaMethods package in your R session,
type library(pcaMethods).

Help files: Detailed information on pcaMethods package functions can be
obtained from the help files. For example, to get a description of bpca type
help("bpca").

Sample data: Two sample data sets are coming with the package. metabo-
liteDataComplete contains a complete subset from a larger metabolite data
set. metaboliteData is the same data set but with 10 % values removed from
an equal distribution.

3 Some examples

To load the package and the two sample data sets type:

> library(pcaMethods)

> data(metaboliteData)

> data(metaboliteDataComplete)

Now centre the data

> md <- prep(metaboliteData, scale = "none", center = TRUE)

> mdC <- prep(metaboliteDataComplete, scale = "none", center = TRUE)

Run SVD pca, PPCA, BPCA, SVDimpute and nipalsPCA on the data, using
the pca() wrapper function. The result is always a pcaRes object.

> resPCA <- pca(mdC, method = "svd", center = FALSE, nPcs = 5)

> resPPCA <- pca(md, method = "ppca", center = FALSE, nPcs = 5)

> resBPCA <- pca(md, method = "bpca", center = FALSE, nPcs = 5)

> resSVDI <- pca(md, method = "svdImpute", center = FALSE, nPcs = 5)

> resNipals <- pca(md, method = "nipals", center = FALSE, nPcs = 5)

Figure 2 shows a plot of the eigenvalue structure (pcaRes@sDev). If most of the
variance is captured with few loadings PCA is likely to produce good missing
value estimation results. For the sample data all methods show similar eigen-
values. One can also see that most of the variance is already captured by the
first loading, thus estimation is likely to work fine on this data. For BPCA, the
eigenvalues are scaled differently for reasons discussed above, see Figure 3. The
order of the loadings remains the same.

To get an impression of the correctness of the estimation it is a good idea
to plot the scores / loadings obtained with classical PCA and one of the proba-
bilistic methods against each other. This of course requires a complete data set
from which data is randomly removed. Figure 3 shows this for BPCA on the
sample data.

4



1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

Eigenvalues

si
ze

PCA
PPCA
BPCA
SVDimpute
Nipals PCA

Figure 2: Eigenvalue structure as obtained with different methods

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

−0.6 −0.4 −0.2 0.0 0.2

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1

Loading 1

BPCA

cl
as

si
c 

P
C

A

●
●

●●

●
●

●

●
●●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

−0.8 −0.6 −0.4 −0.2 0.0 0.2

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

Loading 2

BPCA

cl
as

si
c 

P
C

A

Figure 3: Loading 1 and 2 calculated with BPCA plotted against those calcu-
lated with standard PCA.

5



4 Cross validation

Q2 is the goodness measure used for internal cross validation. This allows to
estimate the level of structure in a data set and to optimise the choice of num-
ber of loadings. Cross validation is performed by removing random elements
of the data matrix, then estimating these using the PCA algorithm of choice
and then calculating Q2 accordingly. At the moment, cross-validation can only
be performed with algorithms that allow missing values (i.e. not SVD). Miss-
ing value independent cross-validation is scheduled for implementation in later
versions. Q2 is defined as following for the mean centered data (and possibly
scaled) matrix X.

SSX =
∑

(xij)2

PRESS =
∑

(xij − x̂ij)2

Q2 = 1− PRESS/SSX

The maximum value for Q2 is thus 1 which means that all variance in X is
represented in the predictions; X = X̂.

> q2BPCA <- Q2(resBPCA, mdC, nPcs = 5, nruncv = 1, fold = 10)

> q2Nipals <- Q2(resNipals, mdC, nPcs = 5, nruncv = 1, fold = 10)

> q2SVDI <- Q2(resSVDI, mdC, nPcs = 5, nruncv = 1, fold = 10)

> q2PPCA <- Q2(resPPCA, mdC, nPcs = 5, nruncv = 1, fold = 10)

The second method called kEstimate uses cross validation to estimate the
optimal number of loadings for missing value estimation. The NRMSEP (nor-
malised root mean square error of prediction) [2] is used to define the average
error of prediction. This error normalises the square difference between real and
estimated values for a certain gene by the variance within this gene. The idea
behind this normalisation is that the error of prediction will automatically be
higher if the variance is higher. The NRMSEP for mean imputation is

√
nObs

nObs−1

when cross validation is used, where nObs is the number of observations. The
exact definition is:

NRMSEPk =

√√√√1
g

∑
j∈G

∑
i∈Oj

(xij − x̂ijk)2

ojs2
xj

(3)

where s2
xj

=
∑n

i=1(xij −xj)2/(n− 1), this is the variance within a certain gene.
Further, G denotes the set of incomplete genes, g is the number of incomplete
genes. Oj is the set of missing observations in gene j and oj is the number of
missing observations in gene j. x̂ijk stands for the estimate of value i of gene j
using k loadings. See Figure 5 for an example.

> errEsti <- kEstimate(md, method = "svdImpute", maxPcs = 5, nruncv = 1)

6



PC

Q
2

0.55

0.60

0.65

1 2 3 4 5

BPCA Nipals

PPCA

1 2 3 4 5

0.55

0.60

0.65

SVD−Impute

Figure 4: Boxplot of the Q2 results for BPCA, Nipals PCA, SVDimpute and
PPCA. PPCA and SVDimpute both deliver better results than BPCA and
Nipals in this example.

5 Visualisation of the results

Some methods for display of scores and loadings are also provided. slplot() is
a convenient way to present a PCA result for two scores / loadings. An example
is shown in Figure 6.
Another method called plotPcs() allows to visualise many PCs plotted against
each other, see Figure 7.

7



Loadings

N
R

M
S

E
P

 (
S

in
gl

e 
ite

ra
tio

n)
0.

0
0.

1
0.

2
0.

3
0.

4

Figure 5: Boxplot showing the NRMSEP versus the number of loadings. In this
example only one iteration was performed, it is recommendable to allow more
iterations to obtain better estimates of the NRMSEP.

8



−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

Scores

61.62% of the variance explained75.02% of the variance explained
PC 1

P
C

 2

V23

V50

V35

V32

V40

V3
V1

V29

V20V16

V39V42

V18

V13

V51

V38
V8

V31 V24

V15

V49

V11

V34

V47

V7

V9V44

V26

V28
V19

V6

V33

V52 V41

V43

V21

V27

V25

V46

V4

−0.3 −0.2 −0.1 0.0 0.1

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

Loadings

PC 1

P
C

 2

5774
4041

91124 48
98 137958159 132104

1

73122 85
28

10358
87

38 107

7

42 53 114

33

93
1317672 12013822
113 90
112

3

16

133
61

117102
18

63

50

31
118 9

32
12894

5

60

70
97

108 77
43

8388 82

55

44
100

4

30 10645
54

49

15

29

23

71 13964

8

Figure 6: slplot for scores and loadings obtained with SVDimpute.

9



−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

Scores

PC 1

P
C

 2

V23

V50

V35

V32

V40

V3
V1

V29
V20

V16

V39V42

V18

V13

V51

V38
V8

V31
V24

V15

V49

V11

V34

V47

V7

V9
V44

V26

V28

V19

V6

V33

V52 V41

V43

V21

V27

V25

V46

V4

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Scores

PC 1

P
C

 3

V23

V50

V35

V32V40

V3

V1

V29
V20

V16

V39

V42

V18

V13

V51

V38

V8

V31

V24

V15

V49

V11

V34

V47

V7
V9

V44 V26
V28

V19
V6

V33

V52
V41

V43

V21
V27

V25

V46

V4

−2 −1 0 1 2

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Scores

PC 2

P
C

 3

V23

V50

V35

V32V40

V3

V1

V29
V20

V16

V39

V42

V18

V13

V51

V38

V8

V31

V24

V15

V49

V11

V34

V47

V7
V9

V44 V26
V28

V19
V6

V33

V52
V41

V43

V21
V27

V25

V46

V4

Figure 7: A plot of score 1:3 for PPCA created with plotPcs()

10



References

[1] Troyanskaya O. and Cantor M. and Sherlock G. and Brown P. and
Hastie T. and Tibshirani R. and Botstein D. and Altman RB. Miss-
ing value estimation methods for DNA microarrays. Bioinformatics. 2001
Jun;17(6):520-5.

[2] Feten G. and Almoy T. and Aastveit A.H. Prediction of Missing Values
in Microarray and Use of Mixed Models to Evaluate the Predictors., Stat.
Appl. Genet. Mol. Biol. 2005;4(1):Article10

[3] Oba S. and Sato MA. and Takemasa I. and Monden M. and Matsubara
K. and Ishii S. A Bayesian missing value estimation method for gene
expression profile data. Bioinformatics. 2003 Nov 1;19(16):2088-96.

[4] Wold H. Estimation of principal components and related models by it-
erative least squares. In Multivariate Analysis (Ed. P.R. Krishnaiah),
Academic Press, NY, 391-420.

11


	PCA algorithms
	Getting started
	Some examples
	Cross validation
	Visualisation of the results

