
Description of the maDB package

Johannes Rainer∗

April 20, 2005

Tyrolean Cancer Research Institute
Innrain 66, 6020 Innsbruck, Austria, http://www.tcri.at

and Institute for Genomics and Bioinformatics, Graz University of Technology,
8010 Graz, Austria, http://www.genome.tugraz.at

Contents

1 Introduction 1

2 Storing a micro array experiment into the database 3

3 Reloading a set of arrays from the database 7
3.1 Loading expression values for a set of genes from the database 9
3.2 Loading regulation values for a set of genes from the database 9

4 Inserting the annotation into the database 10

5 Searching for genes with similar expression or regulation pattern 11

1 Introduction

The package maDB provides functions to create a micro array database and to store micro
array experiments (normalized expression values) along with sample information and an-
notation into it. The micro array database should be flexible enough to store one channel
arrays like Affymetrix Genechips as well as two color arrays into it. Micro array experiments
can be reloaded, once stored into the database, into R as whole experiment, or only a subset
of specific genes and / or samples can be retrieved. As an additional feature it is possible to
search for genes with a specific gene expression or regulation pattern over a set for samples

∗johannes.rainer@tugraz.at

1

http://www.tcri.at
http://www.genome.tugraz.at

Figure 1: The maDB database model.

(arrays). As expression or regulation pattern template a custom template can be used, as
well as the pattern of a gene in the database.

This package is not meant to replace the existing micro array database systems, it should
simply allow to store micro array experiments in one place together with sample information
and annotation, so that for example different people can work from different workstations
with the same datasets.

The database model is shown in figure 1. Attributes with the ending pk and fk mark
primary keys and foreign keys respectively. To describe this simple model in a few words:
each micro array experiment consists of a set of arrays, where each of the arrays has one
(Affymetrix) or more (two or more color arrays) signal channels. In each signal channels
there are measured a number of n expression values (one expression value per gene, the
exp_values table should contain normalized expression values, also for two color arrays).
The signal channels link to the samples table (one sample can be hybridized onto more than
one signal channels in the case of a technical replicate). Again two signal channels can be
combined in one comparison and result in the regulation (M) and average expression (A)
values which are stored in the regulation_values table. The annotation for the IDs can
be stored in a database table called annotation.

2

2 Storing a micro array experiment into the database

First of all a connection to the PostgreSQL database has to be established (using the dbCon-
nect function from the RdbiPgSQL package) and a empty database has to be created (this
can be done or with the createdb function in a Linux console, or by the SQL call CREATE
DATABASE dbname). Before creating the database it is needed to delete any databases with
the same name (it is therefore also important to use another database name). To avoid the
logging of every SQL call the log.level is set to ERROR, so only possible errors are logged
to the log file.

> library(maDB)

Loading required package: Biobase

Loading required package: tools

Welcome to Bioconductor

Vignettes contain introductory material. To view,

simply type: openVignette()

For details on reading vignettes, see

the openVignette help page.

Loading required package: affy

Loading required package: reposTools

Loading required package: limma

Loading required package: pgUtils

Loading required package: Rdbi

Loading required package: RdbiPgSQL

> con.su <- dbConnect(PgSQL(), host = "localhost", user = "postgres",

+ dbname = "template1")

> result <- dbGetResult(dbSendQuery(con.su, "SELECT datname FROM pg_database"))

> if (sum(result[, "datname"] == "madb") > 0) {

+ dbSendQuery(con.su, "DROP DATABASE madb")

+ }

status = 1

status.string = PGRES_COMMAND_OK

rows = 0

columns = 0

is.binary = FALSE

command.response = DROP DATABASE

> dbSendQuery(con.su, "CREATE DATABASE madb")

status = 1

status.string = PGRES_COMMAND_OK

3

rows = 0

columns = 0

is.binary = FALSE

command.response = CREATE DATABASE

> dbDisconnect(con.su)

> con <- dbConnect(PgSQL(), host = "localhost", user = "postgres",

+ dbname = "madb")

> log.level <- "ERROR"

In the real life the connections should not be established as user postgres, and the Post-
greSQL database should be configured in the way, that at least a password has to be sub-
mitted.

The micro array database tables will be created automatically upon the first insertion
of a micro array experiments into the database. Lets assume that you got a object from
the type exprSet from the Biobase package after normalization (eg using rma from the
affy package). In this vignette we use a subset of genes (100 probe sets) from a micro array
study using Affymetrix GeneChips. Basically the samples are from two B–ALL (B–cell acute
lymphoblastic leukemia) patients and two T–ALL patients. From each patient peripheral
blood was taken before start of treatment, and after 6 hours GC (glucocorticoid) treatment.
Those samples (sample before treatment and after 6 hours GC treatment) are hybridized
onto the chips used in this example.

The exprSet object is transformed into a EexprSet object which inherits all attributes
from it and which extends its functionality (for example to draw MA plots using drawMA or
to store the object into the database).

> data("smallALL")

> class(NormChips)

[1] "exprSet"

attr(,"package")

[1] "Biobase"

> NormChips <- EexprSet(NormChips)

> class(NormChips)

[1] "EexprSet"

attr(,"package")

[1] "maDB"

Before storing the experiment into the database it is useful to describe the samples that
were hybridized onto the chips. This information can be stored into a list of Samples objects
that can be added to the @samples slot of the EexprSet object. The linkage between the
signal channel and the samples has to be established with SignalChannel objects.

4

> Sample1 <- new("Sample", name = "B-ALL-13", individual = "13KKI",

+ tissue = "PB", species = "hs", exposure.time = "0h")

> Sample2 <- new("Sample", name = "B-ALL-13", individual = "13KKI",

+ in.vivo.treatments = "GC", tissue = "PB", species = "hs",

+ exposure.time = "6h")

> Sample3 <- new("Sample", name = "B-ALL-17", individual = "17KKI",

+ tissue = "PB", species = "hs", exposure.time = "0h")

> Sample4 <- new("Sample", name = "B-ALL-17", individual = "13KKI",

+ in.vivo.treatments = "GC", tissue = "PB", species = "hs",

+ exposure.time = "6h")

> Sample5 <- new("Sample", name = "T-ALL-20", individual = "20KKI",

+ tissue = "PB", species = "hs", exposure.time = "0h")

> Sample6 <- new("Sample", name = "T-ALL-20", individual = "20KKI",

+ in.vivo.treatments = "GC", tissue = "PB", species = "hs",

+ exposure.time = "6h")

> Sample7 <- new("Sample", name = "T-ALL-25", individual = "25KKI",

+ tissue = "PB", species = "hs", exposure.time = "0h")

> Sample8 <- new("Sample", name = "T-ALL-25", individual = "25KKI",

+ in.vivo.treatments = "GC", tissue = "PB", species = "hs",

+ exposure.time = "6h")

> TheSamples <- list(Sample1, Sample2, Sample3, Sample4, Sample5,

+ Sample6, Sample7, Sample8)

> SigChannels <- getSignalChannels(NormChips)

Got one color micro arrays...

> for (i in 1:length(SigChannels)) {

+ SigChannels[[i]]@sample.index <- i

+ }

> publishToDB(NormChips, con, exp.name = "maDB_Vignette", signal.channels = SigChannels,

+ samples = TheSamples, v = FALSE)

Setting the data types for all attributes to TEXT

Setting the data types for all attributes to TEXT

Setting the data types for all attributes to TEXT

Setting the data types for all attributes to TEXT

Inserting the sample into the database

Inserting the sample into the database

Inserting the sample into the database

5

Inserting the sample into the database

Inserting the sample into the database

Inserting the sample into the database

Inserting the sample into the database

Inserting the sample into the database

Experiment added to the experiments table...

If it is desired to compare the expression values between the chips, it is possible to
calculate regulation values (M values). The function dbCalculateRegulations calculates
those regulation values within a micro array experiment and inserts the regulation values
back into the database (the regulation values (M) and average expression values (A) into the
regulation_values database table, the information about the signal channels used, in the
comparisons into the comparisons table).

The function dbGetExperimentInfo can be used to get a list of available experiments
that are stored into the database, or to read a short information from a specific experiment
out of the database.

> dbGetExperimentInfo(con)

You have not submitted an experiment title, please submit one of the following that are available in the database:

experiments_pk title description exp_date publish_date

1 1 maDB_Vignette 18011977 Wed Apr 20 15:43:44 2005

> info <- dbGetExperimentInfo(con, "maDB_Vignette")

> colnames(info)

[1] "arrays_pk" "chip" "arrays_fk"

[4] "signal_channels_pk" "array_name" "samples_fk"

[7] "name" "individual" "line"

[10] "tissue" "treatment" "in_vivo_treatments"

[13] "exposure_time"

Regulation values will be calculated by comparing the expression values from the 100
genes of the chips after 6 hours GC–treatment with those before treatment for each patient.
These regulation values are stored into the regulation_values database tables.

> info[, c("name", "in_vivo_treatments", "exposure_time")]

name in_vivo_treatments exposure_time

1 B-ALL-13 <NA> 0h

2 B-ALL-13 GC 6h

3 B-ALL-17 <NA> 0h

4 B-ALL-17 GC 6h

5 T-ALL-20 <NA> 0h

6 T-ALL-20 GC 6h

7 T-ALL-25 <NA> 0h

8 T-ALL-25 GC 6h

6

> dbCalculateRegulations(con, "maDB_Vignette", comparisons = list(c(2,

+ 1), c(4, 3), c(6, 5), c(8, 7)), v = FALSE)

To get an information of the comparisons that are available for a micro array experiment,
the dbGetComparisons can be used.

> Comparisons <- dbGetComparisons(con, "maDB_Vignette")

> Comparisons[, c("name.red", "exposure_time.red", "name.green",

+ "exposure_time.green")]

name.red exposure_time.red name.green exposure_time.green

[1,] "B-ALL-13" "6h" "B-ALL-13" "0h"

[2,] "B-ALL-17" "6h" "B-ALL-17" "0h"

[3,] "T-ALL-20" "6h" "T-ALL-20" "0h"

[4,] "T-ALL-25" "6h" "T-ALL-25" "0h"

3 Reloading a set of arrays from the database

A whole micro array experiment or only a subset of arrays from an micro array experiment
can be retrieved from the database using the loadFromDB function. In the example below
only those arrays are loaded from the database, on which samples from the patient T–ALL–25
were hybridized onto.

> info <- dbGetExperimentInfo(con, "maDB_Vignette")

> info.reduced <- info[info[, "name"] == "T-ALL-25",]

> TALL25 <- loadFromDB(EexprSet(), con, "maDB_Vignette", pk = info.reduced[,

+ "signal_channels_pk"], v = FALSE)

> TALL25

Expression Set (exprSet) with

100 genes

2 samples

phenoData object with 0 variables and 0 cases

varLabels

The function drawMA can be used to draw MA plots from objects of the type EexprSet.
The parameters r and g represent the index of the signal channel in the exprs slot that
should be used as red and green signal channel. The figure 2 represents the MA plot of the
100 probe sets of the 6 hours GC treated sample of patient T–ALL–25 against the sample
before treatment.

7

> drawMA(TALL25, r = 2, g = 1)

taking the chip 0007_001_25KKI0Pb_h01_SJ_220704.CEL as the green color array and the chip 0008_001_25KKI6Pb_h01_SJ_220704.CEL as.the red one

building a dummy weights matrix...

2 3 4 5 6 7 8 9

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0008_001_25KKI6Pb_h01_SJ_220704.CEL , 0007_001_25KKI0Pb_h01_SJ_220704.CEL

A=1/2*log2(R*G)

M
=

lo
g2

(R
/G

)

Figure 2: MA plot of patient T–ALL-25 samples.

8

3.1 Loading expression values for a set of genes from the database

The function getEDB can be used to fetch the expression values from a set of genes (in a set
of samples) from the database. The code below loads the expression values for the first 5
probe sets in the samples of patient B–ALL–13 from the database. Basically it is needed to
first identify the signal channels on which the desired samples were hybridized and to submit
the appropriate primary keys of the signal_channels database table to the function.

> info <- dbGetExperimentInfo(con, "maDB_Vignette")

> info.reduced <- info[info[, "name"] == "B-ALL-13",]

> EValues <- getEDB(con, id = rownames(exprs(NormChips))[1:5],

+ signal.channels.pk = info.reduced[, "signal_channels_pk"],

+ v = FALSE, column.names = c("name", "exposure_time"))

> EValues

B-ALL-13, 0h B-ALL-13, 6h

1553914_at 2.87426 3.16978

1553915_at 1.81656 1.95677

1553917_at 3.36801 3.05621

1553918_at 3.36252 3.16360

1553919_at 3.73338 3.71397

3.2 Loading regulation values for a set of genes from the database

The function to load regulation values for a set of genes from a set of comparisons from the
database is called getMDB and works just like the getEDB function.

> info <- dbGetComparisons(con)

> info.reduced <- info[info[, "name.red"] == "B-ALL-13" | info[,

+ "name.red"] == "B-ALL-17",]

> MValues <- getMDB(con, id = rownames(exprs(NormChips))[1:5],

+ comparisons.pk = info.reduced[, "comparisons_pk"], v = FALSE,

+ column.names = c("name", "exposure_time"))

> MValues

UniqueID B-ALL-13, 6h B-ALL-17, 6h

1553914_at "1553914_at" "0.29552" "0.49591"

1553915_at "1553915_at" "0.14021" "0.18615"

1553917_at "1553917_at" "-0.3118" "-0.12686"

1553918_at "1553918_at" "-0.19892" "0.16644"

1553919_at "1553919_at" "-0.01941" "-0.10506"

9

4 Inserting the annotation into the database

To insert the annotation of the IDs that identify the sequences on the arrays the function
dbUpdateAnnotation can be used. Basically this function can also be used to update the
annotation that is already stored in the database (for example after a new UniGene release).
In the case of updating the annotation the old annotation from the database will automati-
cally backed up into a file. To check how much the annotation in the database differs from
a new one (for example of a new annotation package release) the function checkForDif-

ferentAnnotation can be used.
The annotation created in this example bases on the annotation of the hgu133plus2 meta

data package and the annotation table is created with the functions of the annaffy package.

> IDs <- dbGetResult(dbSendQuery(con, "SELECT DISTINCT id FROM exp_values"))[,

+ "id"]

The code above gets a unique list of IDs from the exp_values database table (as IDs the
rownames of the @exprs slot of the exprSet object are used).

> library(annaffy)

Loading required package: GO

Loading required package: KEGG

Loading required package: annotate

> AnnotationTable <- matrix(ncol = 4, nrow = length(IDs))

> colnames(AnnotationTable) <- c("id", "gen_bank", "uni_gene",

+ "symbol")

> AnnotationTable[, 1] <- IDs

> AnnotationTable[, 2] <- getText(aafGenBank(IDs, "hgu133plus2"))

[1] "You have package hgu133plus2 but the incorrect version"

Loading required package: hgu133plus2

> AnnotationTable[, 3] <- getText(aafUniGene(IDs, "hgu133plus2"))

> AnnotationTable[, 4] <- getText(aafSymbol(IDs, "hgu133plus2"))

This (short) annotation table can be inserted using the dbUpdateAnnotation function.
Allowed columns (and column names) are id, gen bank, description, uni gene, locuslink,
symbol, chromosome, chromosome location. Future versions of the maDB package will be
more flexible concerning the annotation of the IDs.

For the later annotation of the IDs using the database the dbGetAnnotation or getAn-
notation functions can be used.

> dbUpdateAnnotation(con, data = AnnotationTable, chip = NormChips@annotation,

+ v = FALSE)

10

Setting the data types for all attributes to TEXT

Setting the data types for all attributes to TEXT

> dbGetAnnotation(con, id = IDs[1:5], v = FALSE, chip = "hgu133plus2")

id gen_bank description uni_gene locuslink symbol

[1,] "1553914_at" "NM_153227" NA "Hs.447547" NA "MGC34800"

[2,] "1553915_at" "NM_173577" NA "" NA "C10orf126"

[3,] "1553917_at" "NM_152671" NA "Hs.173939" NA "PIP5K3"

[4,] "1553918_at" "NM_152506" NA "Hs.350679" NA "C21orf129"

[5,] "1553919_at" "NM_173520" NA "Hs.380224" NA "C9orf62"

chromosome

[1,] NA

[2,] NA

[3,] NA

[4,] NA

[5,] NA

It is also possible to search for all IDs (probe sets) that target the same gene.

> dbGetAnnotation(con, id = "CD24", chip = "hgu133plus2", search.col = "symbol",

+ v = FALSE)

id gen_bank description uni_gene locuslink symbol chromosome

1 "208651_x_at" "M58664" NA "Hs.375108" NA "CD24" NA

2 "266_s_at" "L33930" NA "Hs.375108" NA "CD24" NA

5 Searching for genes with similar expression or regu-

lation pattern

Clustering genes according to their regulation or expression pattern in a set of samples is
nothing new in the micro array analysis. The function dbSearchSimilarPattern performs
basically the same procedure, that is to compare the expression or regulation pattern of a
gene with those of other genes. The similarity is measured (like in the HCL (hierarchical
clustering) analysis) using different distance measurement methods (euclidian, pearson cor-
relation ...). But instead of clustering the genes the function simply measures the distances
(similarity) of a template gene expression or regulation pattern and those of the genes in the
database. As a template a gene pattern or a custom template can be used.

In the example below genes that show a similar expression pattern like the CD19 gene
(which is a B–lymphocyte antigen) in the 8 samples stored in the database are searched.
With the parameter include.by.name the samples can be specified, that should be included

11

in the similarity calculation (in our case all 4 patients (and therefore all 8 samples)). By
default the function uses euclidian distance measurement to define the similarity between
vectors, but also other methods can be used. The Similarity which is returned by the
function can also be used to plot the similar gene expression patterns (see figure 3).

> CD19Sim <- dbSearchSimilarPattern(con, id = "206398_s_at", include.by.name = c("T-ALL-20",

+ "T-ALL-25", "B-ALL-13", "B-ALL-17"), include.values = TRUE,

+ v = FALSE)

> dbGetAnnotation(con, id = names(CD19Sim@distances)[1:5], chip = "hgu133plus2",

+ columns = "symbol", v = FALSE)

id symbol

[1,] "206398_s_at" "CD19"

[2,] "208651_x_at" "CD24"

[3,] "266_s_at" "CD24"

[4,] "1553993_s_at" "MED25"

[5,] "1553971_a_at" "GATS"

> dbDisconnect(con)

> con <- NULL

12

> plot(CD19Sim)

0 2 4 6 8 10

4
6

8
10

12
14

Index

te
m

pl
at

e

T
−

A
LL

−
20

, P
B

, 0
h

T
−

A
LL

−
20

, P
B

, 6
h

T
−

A
LL

−
25

, P
B

, 0
h

T
−

A
LL

−
25

, P
B

, 6
h

B
−

A
LL

−
13

, P
B

, 0
h

B
−

A
LL

−
13

, P
B

, 6
h

B
−

A
LL

−
17

, P
B

, 0
h

B
−

A
LL

−
17

, P
B

, 6
h

206398_s_at
206398_s_at
208651_x_at
266_s_at
1553993_s_at
1553971_a_at

Figure 3: Genes wit similar expression pattern as CD19. (black line: expression pattern of
the probe set 206398 s at (CD19), the other lines correspond to the 5 genes with the most
similar expression pattern as the CD19 gene).

13

	Introduction
	Storing a micro array experiment into the database
	Reloading a set of arrays from the database
	Loading expression values for a set of genes from the database
	Loading regulation values for a set of genes from the database

	Inserting the annotation into the database
	Searching for genes with similar expression or regulation pattern

