
IMAGE ANALYSIS FOR MICROSCOPY SCREENS

Image analysis for microscopy screens
Image analysis and processing with EBImage

by Oleg Sklyar and Wolfgang Huber

The package EBImage provides functionality to per-
form image processing and image analysis on large sets
of images in a programmatic fashion using the R lan-
guage.

We use the term image analysis to describe the ex-
traction of numeric features (image descriptors) from
images and image collections. Image descriptors can
then be used for statistical analysis, such as classifi-
cation, clustering and hypothesis testing, using the
resources of R and its contributed packages.

Image analysis is not an easy task, and the defi-
nition of image descriptors depends on the problem.
Analysis algorithms need to be adapted correspond-
ingly. We find it desirable to develop and optimize
such algorithms in conjunction with the subsequent
statistical analysis, rather than as separate tasks. This
is one of our motivations for writing the R-package
EBImage.

We use the term image processing for operations
that turn images into images, with the goals of
enhancing, manipulating, sharpening, denoising or
similar (Russ , 2002). While some image processing
is often needed as a preliminary step for image anal-
ysis, image processing is not the primary aim of the
package. We focus on methods that do not require in-
teractive user input, such as selecting image regions
with a pointer etc. Whereas interactive methods can
be extremely effective for small sets of images, they
tend to have limited throughput and reproducibility.

EBImage uses Magick++ interface to the
ImageMagick (2006) image processing library to im-
plement much of its functionality in image process-
ing and input/output operations.

Cell-based assays

Advances in automated microscopy have made it
possible to conduct large scale cell-based assays with
image-type phenotypic readouts. In such an assay,
cells are grown in the wells of a microtitre plate (of-
ten a 96- or 384-well format is used) under a condi-
tion or stimulus of interest. Each well is treated with
one of the reagents from the screening library and the
cells’ response is monitored, for which in many cases
certain proteins of interest are antibody-stained or la-
beled with a GFP-tag (Carpenter and Sabatini , 2004;
Wiemann et al. , 2004; Moffat and Sabatini , 2006;
Neumann et al., 2006).

The resulting imaging data can be in the
form of two-dimensional (2D) still images, three-

dimensional (3D) image stacks or image-based time
courses. Such assays can be used to screen com-
pound libraries for the effect of potential drugs on
the cellular system of interest. Similarly, RNA inter-
ference (RNAi) libraries can be used to screen a set
of genes (in many cases the whole genome) for the
effect of their loss of function in a certain biological
process (Boutros et al., 2004).

Importing and handling images

Images in EBImage are stored in objects of class Image
that extends the R-class array. The colour mode is
defined by the slot rgb in Image; the default mode is
grayscale.

New images can be created with the standard
R-constructor new, or using the wrapper function
Image. The following example code generates a
100x100 pixel grayscale image with black and white
vertical stripes 1:

> im <- Image(0.0, c(100,100))
> im[c(1:20, 40:60, 80:100),,] = 1

As mentioned above, EBImage interfaces
Magick++ for input/output operations. ImageMagick,
and thus EBImage, supports reading and writing of
more than 95 image formats including JPEG, TIFF
and PNG. The package can read and write multi-
page images (image stacks, 3D images) or process
multiple files simultaneously. For example, the fol-
lowing code demonstrates how to read all PNG files
in the working directory into a single object of class
Image, convert them to grayscale and save the output
as a single multi-page TIFF file:

> files <- dir(pattern=".png")
> im <- read.image(files, rgb=TRUE)
> img <- toGray(im)
> write.image(img, "single_multipage.tif")

Besides operations on local image files, anony-
mous HTTP and FTP protocols are supported. The
package can read from both and it can write to FTP
only. These protocols are supported internally by
ImageMagick and do not use R-connections.

The storage mode of grayscale images is double
(or numeric), and all R-functions that work with ar-
rays can be directly applied to grayscale images. This
includes the arithmetic functions, subsetting, his-
tograms, Fourier transformation, (local) regression
etc. For example, the sharpened image in Figure 1c
can be obtained by subtracting the slightly blurred,
scaled in colour version of the original image (Fig-
ure 1b) from its source in Figure 1a. All pixels that

1All examples in this article are based on the BioC 1.9-devel version of EBImage, version 1.3.100 or later

1

IMAGE ANALYSIS FOR MICROSCOPY SCREENS

become negative after subtraction are then re-set to
background. The source image is a subset of the orig-
inal microscopic image. Hereafter, variables in the
code are given the same literal names as the corre-
sponding image labels (e.g. data of variable a are
shown in Figure 1 a, b – in b, and C – in c, etc).

> orig <- read.image("ch2.png")
> a <- orig[150:550, 120:520,]
> b <- blur(0.5 * a, 80, 5)
> C <- a - b
> C[C < 0] = 0
> C <- normalize(C)

One can think of this code as of a naive, but
fast and effective, version of the unsharp mask fil-
ter; a more sophisticated implementation from the
ImageMagick library is provided by the function
unsharpMask in the package.

Figure 1: Implementation of a simple unsharp mask
filter: (a) source image, (b) blurred colour-scaled im-
age, (c) sharpened image after normalization

Some of the image analysis routines in EBImage
assume grayscale data in the interval [0, 1], but for-
mally there are no restrictions on the range.

The storage mode of RGB-images is integer, and
we use the three lowest bytes to store red (R), green
(G) and blue (B) values each in the integer-based
range of [0, 255]. Because of this, arithmetic and
other functions are generally meaningless for RGB-
images; although they can be useful in some special
cases, as shown in the example code in the follow-
ing section. Support for RGB-images in EBImage is
included to enhance the display of the analysis re-
sults. Most analysis routines require grayscale data
though.

Image processing

The ImageMagick library provides a number of image
processing routines, so-called filters. Many of those
are ported to R by the package. The missing ones will
be added at a later stage. We have also implemented
additional image processing routines that we found
useful for our work on cell-based assays.

Filters are implemented as functions acting on ob-
jects of class Image and returning a new Image-object
of the same or appropriately modified size. One
can divide them into four categories: image enhance-

ment, segmentation, transformation and colour correc-
tion. Some examples are listed below.

sharpen, unsharpMask generate sharpened ver-
sions of the original image.

gaussFilter applies the Gaussian blur operator to
the image, softening sharp edges and noise.

thresh segments a grayscale image into a binary
black-and-white image by the adaptive thresh-
old algorithm.

mOpen, mClose use erosion and dilation to en-
hance edges of objects in binary images and to
reduce noise.

distMap performs a Euclidean distance transform of
a binary image, also known as distance map.
On a distance map, values of pixels indicate
how far are they away from the nearest back-
ground. Our implementation is adapted from
the SIP Toolbox (2005) and is based on the al-
gorithm by Lotufo and Zampirolli (2001).

normalize shifts and scales colours of grayscale im-
ages to a specified range, normally [0, 1].

sample.image proportionally resizes images.

The following code demonstrates how grayscale
images recorded using three different microscope fil-
ters (Figure 2 a, b and c) can be put together into
a single false-colour representation (Figure 2 d), and
conversely, how a single false-colour image can be
decomposed into its individual channels.

Figure 2: Composition of a false-colour image (d)
from a set of grayscale microscopy images for three
different luminescent compounds: (a) – DAPI, (b) –
tubulin and (c) – phalloidin

> files <- c("ch1.png","ch2.png","ch3.png")
> orig <- read.image(files, rgb=FALSE)
> abc <- orig[150:550, 120:520,]
> a <- toGreen(abc[,,1]) # RGB

2

IMAGE ANALYSIS FOR MICROSCOPY SCREENS

> b <- toRed(abc[,,2]) # RGB
> d <- a + b + toBlue(abc[,,3])
> C <- getBlue(d) # gray

Displaying images

Images can be displayed in two different ways.
EBImage defines method display that shows images
in an interactive X11 window, where image stacks
can be animated and browsed through. This func-
tion is fast, but (so far) it fails on some systems, in-
cluding all tested MacOS X and some ssh -X ses-
sions. It does not use graphic devices of R, and
thus cannot be redirected to any of those. As a
workaround for grayscale images EBImage provides
method plot.image, which is a wrapper around the
standard function image from the graphics package.
Since each pixel is drawn as a polygon, plot.image
is slow. Additionally it can plot only the first image
of a 3D stack. A code example is shown below.

> display(abc) # displays all 3
> plot.image(abc[,,2]) # can display just 1

Drawables

Pixel values can be set either by using the convential
subset assignment syntax for arrays (as in the third
code example, C[C < 0] = 0) or by using drawables.
EBImage defines the following instantiable classes
for drawables (derived from the virtual Drawable):
DrawableCircle, DrawableLine, DrawableRect and
DrawableEllipse. The stroke and fill colours, the
fill opacity and the stroke width can be set in the
corresponding slots of Drawable. As the opportu-
nity arises, we plan to provide drawables for text,
poly-lines and polygons. Drawables can be drawn
on Images with the method draw; both grayscale and
RGB images are supported with all colours automat-
ically converted to gray levels on grayscale images.

The code below illustrates how drawables can
be used to mark the positions and relative sizes of
the nuclei detected from the image in Figure 2a. It
assumes that x1 is the result of the EBImage func-
tion wsObjects, which uses a watershed-based im-
age segmentation for object detection. x1 contains
matrix objects with object coordinates (columns 1
and 2) and areas (column 3). The resulting im-
age is shown in Figure 3b. This is just an illustra-
tion, i. e. we do not assume circular shapes of nu-
clei. For comparison, originally detected nuclei are
colour-marked in Figure 3a using the EBImage func-
tion wsPaint:

> src <- toRGB(abc[,,1])
> x <- x1$objects[,1]
> y <- x1$objects[,2]
> r <- sqrt(x1$objects[,3] / pi)

> cx <- DrawableCircle(x, y, r)
> cx@strokeColor <- "yellow"
> cx@doFill <- FALSE
> b <- draw(src, cx)
> a <- wsPaint(x1, src)

Figure 3: Colour-marked nuclei detected with func-
tion wsObjects: (a) – as detected, (b) – illustrated by
DrawableCircle’s.

Analysing an RNAi screen

Consider an experiment in which images like in Fig-
ure 2 were recorded for each of ≈ 20,000 genes, us-
ing a whole-genome RNAi library to test the effect
of gene knock-down on cell viability and appear-
ance. Among the image descriptors of interest are
the number, position, size, shape and the fluorescent
intensities of cells and nuclei.

EBImage provides functionality to identify objects
in images and to extract image descriptors listed
above in the function wsObjects. The function iden-
tifies different objects in parallel using a modified
watershed-based segmentation algorithm and using
image distance maps as input. The result is a list
of three matrix elements objects, pixels (indices of
pixels constituting the objects) and borders (indices
of pixels constituting the object boundaries). If the
supplied image is an image stack, the result is a list
of such lists. The matrix objects has objects in its
rows and their features in its columns: the x and y
coordinates, size, intensity (if a reference image, ref,
is supplied to wsObjects), perimeter and the number
of pixels on the image edge. Objects on the edges of
images are automatically removed if the ratio of the
detected edge pixels to the perimeter is larger than a
value specified.

For every gene, the image analysis workflow
looks, therefore, as follows: load and normalize im-
ages, perform image segmentation, enhance the seg-
mented images by morphological opening and clos-
ing, generate distance maps and use them to iden-
tify cells and nuclei and to extract image descriptors,
and, finally, generate image previews with the iden-
tified objects marked.

Object descriptors can then be analysed statisti-
cally to cluster genes by their phenotypic effect, gen-
erate a list of genes that should be studied further in
more detail (hit list), e. g. genes that have a specific

3

IMAGE ANALYSIS FOR MICROSCOPY SCREENS

phenotypic effect of interest, etc. The image previews
can be used to verify and audit the performance of
the algorithm through visual inspection.

A schematic implementation is illustrated in the
following example code and in the corresponding
images in Figure 4 (variable names correspond to im-
age letter notations). Here we omit the step of nuclei
detection (object x1), from where the matrix of nu-
clei coordinates (object seeds) is retrieved to serve as
starting points for the cell detection. The nuclei de-
tection is done analogously to the cell detection with-
out specifying starting points.

Figure 4: Illustration of the object detection algo-
rithm: (a) – sqrt-brightened combined image of nu-
clei (DAPI from Figure 2a) and cells (phalloidin from
Figure 2c); (b) – image a after blur and adaptive thresh-
olding; (c) – image b after morphological opening fol-
lowed by closing; (d) – normalized distance map gen-
erated from image c; (e) – outlines of cells detected
using wsObjects drawn on top of the RGB image
from Figure 2d; (f) – colour-mapped cells and nuclei
as detected with wsObjects (one unique colour per
object)

> for (X in genes) {
+ files <- dir(pattern=X)
+ orig <- read.image(files)
+ abc <- normalize(orig, independent=TRUE)
+ i1 <- abc[,,1]
+ i2 <- abc[,,2]
+ i3 <- abc[,,3]

+ a <- sqrt(normalize(i1 + i3))
+ b <- thresh(a, 300, 300, 0.0, TRUE)
+ C <- mOpen(b, 1, mKernel(7))
+ C <- mClose(C, 1, mKernel(7))
+ d <- distMap(C) # displayed normalized
+ # x1 <- wsObjects(... - nuclei detection
+ seeds <- x1$objects[,1:2]
+ x2 <- wsObjects(d, 30, 10, .2, seeds, i3)
+ rgb <- toGreen(i1)+toRed(i2)+ toBlue(i3)
+ e <- wsPaint(x2, rgb, col="white",fill=F)
+ f <- wsPaint(x2, i3, opac = 0.15)
+ f <- wsPaint(x1, f, opac = 0.15)
+ }

Note that here we adopted the record-at-a-time ap-
proach: image data, which can be huge, are stored
on a mass-storage device and are loaded into RAM
in portions of just a few images at a time.

Summary

EBImage brings image processing and image analysis
capabilities to R. Its focus is the programmatic (non-
interactive) analysis of large sets of similar images,
such as those that arise in cell-based assays for gene
function via RNAi knock-down. Image descriptors
extracted as the result of analysis of such images can
be analysed further using existing R-functionalities
in machine learning (clustering, classification) and
hypothesis testing.

Our future developments in image analysis will
focus primarily on more accurate object detection
and on algorithms for feature/descriptor extraction,
and eventually on image registration, alignment and
object tracking. Algorithms for the statistical analy-
sis of image descriptors will be developed as part of
a separate package that uses EBImage for image pro-
cessing and analysis. In addition, one can imagine
many other useful features, for example, support for
more ImageMagick functions and better display op-
tions (e. g. using GTK). Contributions or collabora-
tions on these or other topics are welcome.

Availability

EBImage is available from BioConductor (www.
bioconductor.org). The built-in functions
updateEBImage and updateEBImageDev enable up-
dating the package to the lastest stable or the latest
development version, correspondingly, between the
releases of BioConductor.

The package was tested to work on 32 and
64 bit UNIX and Linux systems, and with minor
limitations on MacOS X (the plot.image function
should be used instead of display on MacOS X).
MS Windows version should be available shortly.
EBImage depends on Magick++-devel, which needs
to be present on the system prior to the compilation

4

www.bioconductor.org
www.bioconductor.org

BIBLIOGRAPHY BIBLIOGRAPHY

of the package. Please refer to the ‘INSTALL’-file in-
cluded with the package for troubleshooting system-
specific installation issues.

Acknowledgements

We thank F. Fuchs and M. Boutros for providing
their miscroscopy data and for many stimulating
discussions about the technology and the biology,
R. Gottardo and F. Swidan for testing the package on
MacOS X and the European Bioinformatics Institute
(EBI), Cambridge, UK, for financial support.

Bibliography

M. Boutros, A. Kiger, S. Armknecht, et al. Genome-
wide RNAi analysis of cell growth and viability in
Drosophila. Science, 303:832–835, 2004.

A. E. Carpenter and D.M. Sabatini. Systematic
genome-wide screens of gene function. Nature Re-
views Genetics, 5:11–22, 2004.

ImageMagick: software to convert, edit, and com-
pose images. Copyright: ImageMagick Studio LLC,
1999-2006. URL http://www.imagemagick.org/

R. Lotufo and F. Zampirolli. Fast multidimensional
parallel Euclidean distance transform based on
mathematical morphology. SIBGRAPI-2001/Brazil,
100–105, 2001.

J. Moffat and D.M. Sabatini. Building mammalian
signalling pathways with RNAi screens. Nature
Reviews Mol. Cell Biol., 7:177–187, 2006.

B. Neumann, M. Held, U. Liebel, et al. High-
throughput RNAi screening by time-lapse imag-
ing of live human cells. Nature Mathods, 3(5):385–
390, 2006.

J. C. Russ. The image processing handbook – 4th ed.
CRC Press, Boca Raton. 732 p., 2002

SIP Toolbox: Scilab image processing toolbox.
Sourceforge, 2005. URL http://siptoolbox.
sourceforge.net/

S. Wiemann, D. Arlt, W. Huber, et al. From ORFeome
to biology: a functional genomics pipeline. Genome
Res. 14(10B):2136–2144, 2004.

Oleg Sklyar and Wolfgang Huber
European Bioinformatics Institute
European Molecular Biology Laboratory
Wellcome Trust Genome Campus
Hinxton, Cambirdge

CB10 1SD
United Kingdom
osklyar@ebi.ac.uk; huber@ebi.ac.uk

5

http://www.imagemagick.org/
http://siptoolbox.sourceforge.net/
http://siptoolbox.sourceforge.net/
mailto:osklyar@ebi.ac.uk
mailto:huber@ebi.ac.uk

	Image analysis for microscopy screens

