Package 'ideal'

July 13, 2025

Type Package

Title Interactive Differential Expression AnaLysis

Version 2.2.0

Date 2024-12-19

Description This package provides functions for an Interactive Differential Expression AnaLysis of RNA-sequencing datasets, to extract quickly and effectively information downstream the step of differential expression. A Shiny application encapsulates the whole package. Support for reproducibility of the whole analysis is provided by means of a template report which gets automatically compiled and can be stored/shared.

License MIT + file LICENSE

Depends topGO

- Imports DESeq2, SummarizedExperiment, mosdef (>= 1.1.0), GenomicRanges, IRanges, S4Vectors, ggplot2 (>= 2.0.0), heatmaply, plotly, pheatmap, IHW, gplots, UpSetR, goseq, stringr, dplyr, limma, GOstats, GO.db, AnnotationDbi, shiny (>= 0.12.0), shinydashboard, shinyBS, DT, rentrez, rintrojs, rlang, ggrepel, knitr, rmarkdown, shinyAce, BiocParallel, grDevices, graphics, base64enc, methods, utils, stats
- Suggests testthat, BiocStyle, markdown, airway, org.Hs.eg.db, TxDb.Hsapiens.UCSC.hg38.knownGene, DEFormats, htmltools, edgeR
- URL https://github.com/federicomarini/ideal,

https://federicomarini.github.io/ideal/

BugReports https://github.com/federicomarini/ideal/issues

biocViews ImmunoOncology, GeneExpression, DifferentialExpression, RNASeq, Sequencing, Visualization, QualityControl, GUI, GeneSetEnrichment, ReportWriting, ShinyApps

VignetteBuilder knitr

RoxygenNote 7.3.2

Encoding UTF-8

18

2

Roxygen list(markdown = TRUE)

 $git_url \ https://git.bioconductor.org/packages/ideal$

git_branch RELEASE_3_21

git_last_commit 284ecb7

git_last_commit_date 2025-04-15

Repository Bioconductor 3.21

Date/Publication 2025-07-13

Author Federico Marini [aut, cre] (ORCID: <https://orcid.org/0000-0003-3252-7758>)

Maintainer Federico Marini <marinif@uni-mainz.de>

Contents

deprecated	 	 	 2
deseqresult2DEgenes	 	 	 3
deseqresult2tbl	 	 	 4
ggplotCounts	 	 	 4
goseqTable	 	 	 6
ideal	 	 	 7
ideal-pkg	 	 	 9
plot_ma	 	 	 9
plot_volcano	 	 	 11
read_gmt	 	 	 13
sepguesser	 	 	 14
sig_heatmap	 	 	 14
wrapup_for_iSEE	 	 	 16

Index

deprecated

Deprecated functions in ideal

Description

Functions that are on their way to the function afterlife. Their successors are also listed.

Arguments

... Ignored arguments.

Details

The successors of these functions are likely coming after the rework that led to the creation of the mosdef package. See more into its documentation for more details.

Value

All functions throw a warning, with a deprecation message pointing towards its descendent (if available).

Transitioning to the mosdef framework

- goseqTable() is now being replaced by the more flexible mosdef::run_goseq() function (which is even faster)
- ggplotCounts() is now being replaced by the more flexible, better designed, and actually even more good looking mosdef::gene_plot() function, with better default behavior and all.
- deseqresult2tbl() and deseqresult2DEgenes() are now replaced by the more flexible mosdef::deresult_to_df()
- The internally defined functions createLinkENS(), createLinkGeneSymbol(), and createLinkGO() are now replaced by the equivalent functions in mosdef: mosdef::create_link_ENSEMBL(), mosdef::create_link_NCBI() and mosdef::create_link_GO(). Notably, the mosdef package expanded on the concept of automatically generated buttons, taking this to the extreme of efficiency with the mosdef::buttonifier() function

Author(s)

Federico Marini

Examples

```
# try(goseqtable())
```

deseqresult2DEgenes Generate a tidy table with the DE genes from the results of DESeq

Description

Generate a tidy table with the DE genes from the results of DESeq

Usage

```
deseqresult2DEgenes(deseqresult, FDR = 0.05)
```

Arguments

deseqresult	A DESeq2::DESeqResults() object
FDR	Numeric value, the significance level for thresholding adjusted p-values

Value

A "tidy" data.frame with only genes marked as differentially expressed

Examples

```
# with simulated data...
library(DESeq2)
dds <- DESeq2::makeExampleDESeqDataSet(n = 100, m = 8, betaSD = 2)
dds <- DESeq(dds)
res <- results(dds)
deseqresult2DEgenes(res)
```

deseqresult2tbl Generate a tidy table with the results of DESeq

Description

Generate a tidy table with the results of DESeq

Usage

```
deseqresult2tbl(deseqresult)
```

Arguments

deseqresult A DESeq2::DESeqResults() object

Value

A "tidy" data.frame with all genes

Examples

```
# with simulated data...
library(DESeq2)
dds <- DESeq2::makeExampleDESeqDataSet(n = 100, m = 8, betaSD = 1)
dds <- DESeq2::DESeq(dds)
res <- DESeq2::results(dds)
deseqresult2tbl(res)
```

ggplotCounts

Plot normalized counts for a gene

Description

Plot for normalized counts of a single gene, with jittered points superimposed on the boxplot

ggplotCounts

Usage

```
ggplotCounts(
   dds,
   gene,
   intgroup = "condition",
   annotation_obj = NULL,
   transform = TRUE,
   labels_repel = TRUE
)
```

Arguments

dds	A DESeq2::DESeqDataSet() object.
gene	A character, specifying the name of the gene to plot
intgroup	Interesting groups: a character vector of names in colData(dds) to use for grouping
annotation_obj	A data.frame object, with row.names as gene identifiers (e.g. ENSEMBL ids) and a column, gene_name, containing e.g. HGNC-based gene symbols. Optional.
transform	Logical value, corresponding whether to have log scale y-axis or not. Defaults to TRUE.
labels_repel	Logical value. Whether to use ggrepel's functions to place labels; defaults to TRUE.

Details

Note: this function relies on the DESeq2::plotCounts() function of DESeq2, therefore pseudocounts of 0.5 are added to each point

Value

An object created by ggplot

Examples

```
library("airway")
data("airway", package = "airway")
airway
dds_airway <- DESeq2::DESeqDataSetFromMatrix(assay(airway),
    colData = colData(airway),
    design = ~ cell + dex
)
ggplotCounts(dds_airway,
    gene = "ENSG0000103196", # CRISPLD2 in the original publication
    intgroup = "dex"
)</pre>
```

goseqTable

Description

A wrapper for extracting functional GO terms enriched in a list of (DE) genes, based on the algorithm and the implementation in the goseq package

Usage

```
goseqTable(
  de.genes,
  assayed.genes,
  genome = "hg38",
  id = "ensGene",
  testCats = c("GO:BP", "GO:MF", "GO:CC"),
  FDR_GO_cutoff = 1,
  nTop = 200,
  orgDbPkg = "org.Hs.eg.db",
  addGeneToTerms = TRUE
)
```

Arguments

de.genes	A vector of (differentially expressed) genes
assayed.genes	A vector of background genes, e.g. all (expressed) genes in the assays
genome	A string identifying the genome that genes refer to, as in the goseq::goseq() function
id	A string identifying the gene identifier used by genes, as in the goseq::goseq() function
testCats	A vector specifying which categories to test for over representation amongst DE genes - can be any combination of "GO:CC", "GO:BP", "GO:MF" & "KEGG"
FDR_GO_cutoff	Numeric value for subsetting the results
nTop	Number of categories to extract, and optionally process for adding genes to the respective terms
orgDbPkg	Character string, named as the org.XX.eg.db package which should be available in Bioconductor
addGeneToTerms	Logical, whether to add a column with all genes annotated to each GO term

Details

Note: the feature length retrieval is based on the goseq::goseq() function, and requires that the corresponding TxDb packages are installed and available

ideal

Value

A table containing the computed GO Terms and related enrichment scores

Examples

```
library("airway")
data("airway", package = "airway")
airway
dds_airway <- DESeq2::DESeqDataSetFromMatrix(assay(airway),</pre>
  colData = colData(airway),
  design = ~ cell + dex
)
dds_airway <- DESeq2::DESeq(dds_airway)</pre>
res_airway <- DESeq2::results(dds_airway)</pre>
res_subset <- mosdef::deresult_to_df(res_airway)[1:100, ]</pre>
myde <- res_subset$id</pre>
myassayed <- rownames(res_airway)</pre>
## Not run:
mygo <- goseqTable(myde,</pre>
  myassayed,
  testCats = "GO:BP",
  addGeneToTerms = FALSE
)
head(mygo)
## End(Not run)
```

ideal

ideal: Interactive Differential Expression Analysis

Description

ideal makes differential expression analysis interactive, easy and reproducible. This function launches the main application included in the package.

Usage

```
ideal(
    dds_obj = NULL,
    res_obj = NULL,
    annotation_obj = NULL,
    countmatrix = NULL,
    expdesign = NULL,
    gene_signatures = NULL
)
```

Arguments

dds_obj	A DESeq2::DESeqDataSet() object. If not provided, then a countmatrix and a expdesign need to be provided. If none of the above is provided, it is possible to upload the data during the execution of the Shiny App	
res_obj	A DESeq2::DESeqResults() object. If not provided, it can be computed during the execution of the application	
annotation_obj	A data.frame object, with row.names as gene identifiers (e.g. ENSEMBL ids) and a column, gene_name, containing e.g. HGNC-based gene symbols. If not provided, it can be constructed during the execution via the org.eg.XX.db packages - these need to be installed	
countmatrix	A count matrix, with genes as rows and samples as columns. If not provided, it is possible to upload the data during the execution of the Shiny App	
expdesign	A data.frame containing the info on the covariates of each sample. If not provided, it is possible to upload the data during the execution of the Shiny App	
gene_signatures		
	A list of vectors, one for each pathway/signature. This is for example the output of the read_gmt() function. The provided object can also be replaced during runtime in the dedicated upload widget.	

Value

A Shiny App is launched for interactive data exploration and differential expression analysis

Examples

```
# with simulated data...
library("DESeq2")
dds <- DESeq2::makeExampleDESeqDataSet(n = 100, m = 8)</pre>
cm <- counts(dds)</pre>
cd <- colData(dds)</pre>
# with the well known airway package...
library("airway")
data("airway", package = "airway")
airway
dds_airway <- DESeq2::DESeqDataSetFromMatrix(assay(airway),</pre>
  colData = colData(airway),
  design = \sim cell + dex
)
## Not run:
ideal()
ideal(dds)
ideal(dds_airway)
dds_airway <- DESeq2::DESeq(dds_airway)</pre>
res_airway <- DESeq2::results(dds_airway)</pre>
ideal(dds_airway, res_airway)
```

ideal-pkg

End(Not run)

ideal-pkg

ideal: Interactive Differential Expression Analysis

Description

ideal makes differential expression analysis interactive, easy and reproducible. The analysis of RNA-seq datasets is guided by the Shiny app as main component of the package, which also provides a wide set of functions to efficiently extract information from the existing data. The app can be also deployed on a Shiny server, to allow its usage without any installation on the user's side.

Details

ideal makes differential expression analysis interactive, easy and reproducible. The analysis of RNA-seq datasets is guided by the Shiny app as main component of the package, which also provides a wide set of functions to efficiently extract information from the existing data. The app can be also deployed on a Shiny server, to allow its usage without any installation on the user's side.

Author(s)

Federico Marini <marinif@uni-mainz.de>, 2016-2017

Maintainer: Federico Marini <marinif@uni-mainz.de>

See Also

Useful links:

- https://github.com/federicomarini/ideal
- https://federicomarini.github.io/ideal/
- Report bugs at https://github.com/federicomarini/ideal/issues

plot_ma

MA-plot from base means and log fold changes

Description

MA-plot from base means and log fold changes, in the ggplot2 framework, with additional support to annotate genes if provided.

Usage

```
plot_ma(
  res_obj,
  FDR = 0.05,
 point_alpha = 0.2,
  sig_color = "red",
  annotation_obj = NULL,
  draw_y0 = TRUE,
 hlines = NULL,
  title = NULL,
  xlab = "mean of normalized counts - log10 scale",
 ylim = NULL,
  add_rug = TRUE,
  intgenes = NULL,
  intgenes_color = "steelblue",
  labels_intgenes = TRUE,
  labels_repel = TRUE
)
```

Arguments

res_obj	A DESeq2::DESeqResults() object	
FDR	Numeric value, the significance level for thresholding adjusted p-values	
point_alpha	Alpha transparency value for the points $(0 = \text{transparent}, 1 = \text{opaque})$	
sig_color	Color to use to mark differentially expressed genes. Defaults to red	
annotation_obj	A data.frame object, with row.names as gene identifiers (e.g. ENSEMBL ids) and a column, gene_name, containing e.g. HGNC-based gene symbols. Optional	
draw_y0	Logical, whether to draw the horizontal line at y=0. Defaults to TRUE.	
hlines	The y coordinate (in absolute value) where to draw horizontal lines, optional	
title	A title for the plot, optional	
xlab	X axis label, defaults to "mean of normalized counts - log10 scale"	
ylim	Vector of two numeric values, Y axis limits to restrict the view	
add_rug	Logical, whether to add rug plots in the margins	
intgenes	Vector of genes of interest. Gene symbols if a symbol column is provided in res_obj, or else the identifiers specified in the row names	
intgenes_color	The color to use to mark the genes on the main plot.	
labels_intgenes		
	Logical, whether to add the gene identifiers/names close to the marked plots	
labels_repel	Logical, whether to use geom_text_repel for placing the labels on the features to mark	

Details

The genes of interest are to be provided as gene symbols if a symbol column is provided in res_obj, or else by using the identifiers specified in the row names

plot_volcano

Value

An object created by ggplot

Examples

```
library("airway")
data("airway", package = "airway")
airway
dds_airway <- DESeq2::DESeqDataSetFromMatrix(assay(airway),</pre>
  colData = colData(airway),
  design = \sim cell + dex
)
# subsetting for quicker run, ignore the next two commands if regularly using the function
gene_subset <- c(</pre>
  "ENSG0000103196", # CRISPLD2
  "ENSG00000120129", # DUSP1
  "ENSG0000163884", # KLF15
  "ENSG00000179094", # PER1
  rownames(dds_airway)[rep(c(rep(FALSE, 99), TRUE), length.out = nrow(dds_airway))]
) # 1% of ids
dds_airway <- dds_airway[gene_subset, ]</pre>
dds_airway <- DESeq2::DESeq(dds_airway)</pre>
res_airway <- DESeq2::results(dds_airway)</pre>
plot_ma(res_airway, FDR = 0.05, hlines = 1)
plot_ma(res_airway,
  FDR = 0.1,
  intgenes = c(
    "ENSG00000103196", # CRISPLD2
    "ENSG00000120129", # DUSP1
    "ENSG00000163884", # KLF15
    "ENSG00000179094" # PER1
  )
)
```

plot_volcano

Volcano plot for log fold changes and log p-values

Description

Volcano plot for log fold changes and log p-values in the ggplot2 framework, with additional support to annotate genes if provided.

Usage

```
plot_volcano(
    res_obj,
```

```
FDR = 0.05,
ylim_up = NULL,
vlines = NULL,
title = NULL,
intgenes = NULL,
intgenes_color = "steelblue",
labels_intgenes = TRUE,
labels_repel = TRUE
```

Arguments

res_obj	A DESeq2::DESeqResults() object		
FDR	Numeric value, the significance level for thresholding adjusted p-values		
ylim_up	Numeric value, Y axis upper limits to restrict the view		
vlines	The x coordinate (in absolute value) where to draw vertical lines, optional		
title	A title for the plot, optional		
intgenes	Vector of genes of interest. Gene symbols if a symbol column is provided in res_obj, or else the identifiers specified in the row names		
intgenes_color	The color to use to mark the genes on the main plot.		
labels_intgenes			
	Logical, whether to add the gene identifiers/names close to the marked plots		
labels_repel	Logical, whether to use geom_text_repel for placing the labels on the features to mark		

Details

The genes of interest are to be provided as gene symbols if a symbol column is provided in res_obj, or else b< using the identifiers specified in the row names

Value

An object created by ggplot

Examples

```
# subsetting for quicker run, ignore the next two commands if regularly using the function
gene_subset <- c(
    "ENSG00000103196", # CRISPLD2
    "ENSG00000120129", # DUSP1
```

read_gmt

```
"ENSG0000163884", # KLF15
"ENSG0000179094", # PER1
rownames(dds_airway)[rep(c(rep(FALSE, 99), TRUE), length.out = nrow(dds_airway))]
) # 1% of ids
dds_airway <- dds_airway[gene_subset, ]
dds_airway <- DESeq2::DESeq(dds_airway)
res_airway <- DESeq2::results(dds_airway)
plot_volcano(res_airway)
```

read_gmt Read in a GMT file

Description

Returns a list of pathways from a GMT file.

Usage

```
read_gmt(gmtfile)
```

Arguments

gmtfile	A character value, containing the location of the GMT formatted file. It can also
	be a file found online

Value

A list of vectors, one for each pathway in the GMT file.

Examples

```
# this example reads in the freely available pathways from wikipathways
## Not run:
mysigs <- read_gmt(
    "http://data.wikipathways.org/20240910/gmt/wikipathways-20240910-gmt-Homo_sapiens.gmt"
)
head(mysigs)
# see how the gene identifiers are encoded as ENTREZ id</pre>
```

sepguesser

Description

This function tries to guess which separator was used in a text delimited file

Usage

```
sepguesser(file, sep_list = c(",", "\t", ";", " "))
```

Arguments

file	The name of the file which the data are to be read from
sep_list	A vector containing the candidates for being identified as separators. Defaults to $c(", ", ", " \setminus t", "; ", " ")$

Value

A character value, corresponding to the guessed separator. One of "," (comma), "\t" (tab), ";" (semicolon)," " (whitespace)

Examples

```
sepguesser(system.file("extdata/design_commas.txt", package = "ideal"))
sepguesser(system.file("extdata/design_semicolons.txt", package = "ideal"))
sepguesser(system.file("extdata/design_spaces.txt", package = "ideal"))
mysep <- sepguesser(system.file("extdata/design_tabs.txt", package = "ideal"))</pre>
```

to be used for reading in the same file, without having to specify the sep

sig_heatmap

Plot a heatmap of the gene signature on the data

Description

Plot a heatmap for the selected gene signature on the provided data, with the possibility to compactly display also DE only genes

sig_heatmap

Usage

```
sig_heatmap(
   vst_data,
   my_signature,
   res_data = NULL,
   FDR = 0.05,
   de_only = FALSE,
   annovec,
   title = "",
   cluster_rows = TRUE,
   cluster_cols = FALSE,
   anno_colData = NULL,
   center_mean = TRUE,
   scale_row = FALSE
)
```

Arguments

vst_data	A DESeq2::DESeqTransform() object - usually the variance stabilized transformed data, which will be used to extract the expression values
my_signature	A character vector, usually named, containing the genes which compose the gene signature
res_data	A DESeq2::DESeqResults() object. If not provided, it can be computed during the execution of the application
FDR	Numeric value between 0 and 1, the False Discovery Rate
de_only	Logical, whether to display only DE genes belonging to the pathway - defaults to \ensuremath{FALSE}
annovec	A named character vector, with the corresponding annotation across IDs
title	Character, title for the heatmap
cluster_rows	Logical, whether to cluster rows - defaults to TRUE
cluster_cols	Logical, whether to cluster column - defaults to FALSE. Recommended to be set to TRUE if de_only is also set to TRUE
anno_colData	Character vector, specifying the elements of the colData information to be dis- played as a decoration of the heatmap. Can be a vector of any length, as long as these names are included as colData. Defaults to NULL, which would plot no annotation on the samples.
center_mean	Logical, whether to perform mean centering on the expression values. Defaults to TRUE, as it improves the general readability of the heatmap
scale_row	Logical, whether to perform row-based standardization of the expression values

Value

A plot based on the pheatmap function

Examples

```
# with the well known airway package...
library("airway")
data("airway", package = "airway")
airway
dds_airway <- DESeq2::DESeqDataSetFromMatrix(assay(airway),</pre>
  colData = colData(airway),
  design = \sim cell + dex
)
## Not run:
dds_airway <- DESeq2::DESeq(dds_airway)</pre>
res_airway <- DESeq2::results(dds_airway)</pre>
vst_airway <- DESeq2::vst(dds_airway)</pre>
library(org.Hs.eg.db)
annovec <- mapIds(org.Hs.eg.db, rownames(dds_airway), "ENTREZID", "ENSEMBL")</pre>
mysignatures <- read_gmt(</pre>
  "http://data.wikipathways.org/20190210/gmt/wikipathways-20190210-gmt-Homo_sapiens.gmt"
)
mysignature_name <- "Lung fibrosis%WikiPathways_20190210%WP3624%Homo sapiens"</pre>
library(pheatmap)
sig_heatmap(vst_airway,
  mysignatures[[mysignature_name]],
  res_data = res_airway,
  de_only = TRUE,
  annovec = annovec,
  title = mysignature_name,
  cluster_cols = TRUE
)
## End(Not run)
```

wrapup_for_iSEE wrapup_for_iSEE

Description

Combine data from a typical DESeq2 run

Usage

```
wrapup_for_iSEE(dds, res)
```

Arguments

dds	A DESeq2::DESeqDataSet() object.
res	A DESeq2::DESeqResults() object.

Details

Combines the DESeqDataSet input and DESeqResults into a SummarizedExperiment object, which can be readily explored with iSEE.

A typical usage would be after running the DESeq2 pipeline as specified in one of the workflows which include this package, e.g. in the context of the ideal package.

Value

A SummarizedExperiment object, with raw counts, normalized counts, and variance-stabilizing transformed counts in the assay slots; and with colData and rowData extracted from the corresponding input parameters

Examples

```
# with simulated data...
library(DESeq2)
dds <- DESeq2::makeExampleDESeqDataSet(n = 10000, m = 8)</pre>
dds <- DESeq(dds)
res <- results(dds)</pre>
se <- wrapup_for_iSEE(dds, res)</pre>
# library(iSEE)
# iSEE(se)
## Not run:
# or with the well known airway package...
library("airway")
data("airway", package = "airway")
airway
dds_airway <- DESeq2::DESeqDataSetFromMatrix(assay(airway),</pre>
  colData = colData(airway),
  design = ~ cell + dex
)
dds_airway <- DESeq2::DESeq(dds_airway)</pre>
res_airway <- DESeq2::results(dds_airway)</pre>
se_airway <- wrapup_for_iSEE(dds_airway, res_airway)</pre>
# iSEE(se_airway)
```

End(Not run)

Index

```
deprecated, 2
DESeq2::DESeqDataSet(), 5, 8, 16
DESeq2::DESeqResults(), 3, 4, 8, 10, 12, 15,
        16
DESeq2::DESeqTransform(), 15
DESeq2::plotCounts(), 5
deseqresult2DEgenes, 3
deseqresult2DEgenes(), 3
deseqresult2tbl, 4
deseqresult2tbl(), 3
ggplotCounts, 4
ggplotCounts(), 3
goseq::goseq(), 6
goseqTable, 6
goseqTable(), 3
ideal,7
ideal-package (ideal-pkg), 9
ideal-pkg, 9
mosdef::buttonifier(), 3
mosdef::create_link_ENSEMBL(), 3
mosdef::create_link_GO(), 3
mosdef::create_link_NCBI(), 3
mosdef::deresult_to_df(), 3
mosdef::gene_plot(), 3
mosdef::run_goseq(), 3
plot_ma, 9
plot_volcano, 11
read_gmt, 13
read_gmt(), 8
sepguesser, 14
sig_heatmap, 14
wrapup_for_iSEE, 16
```